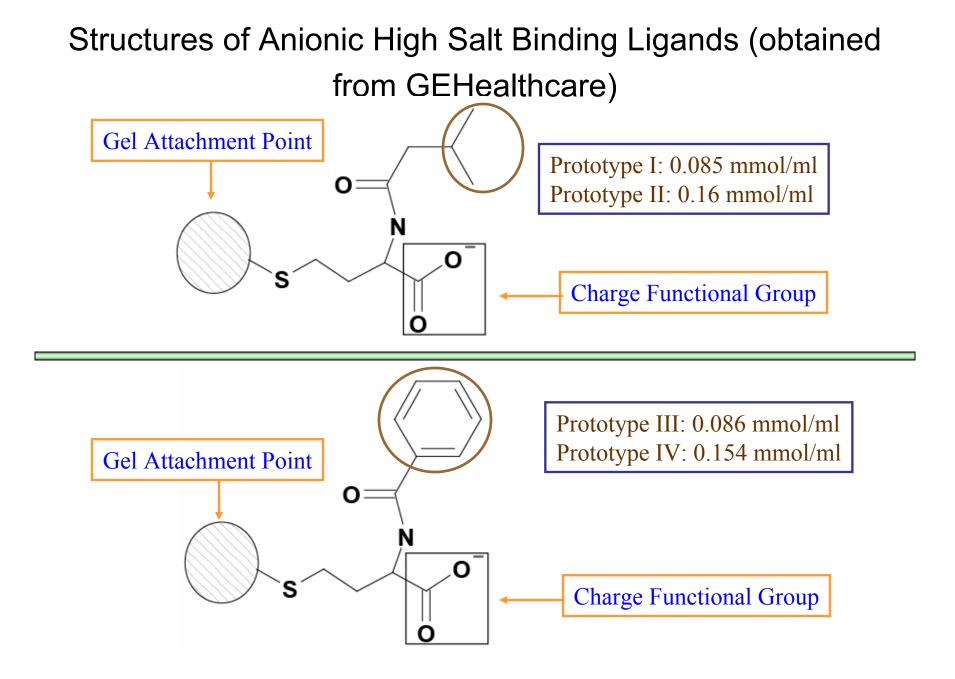
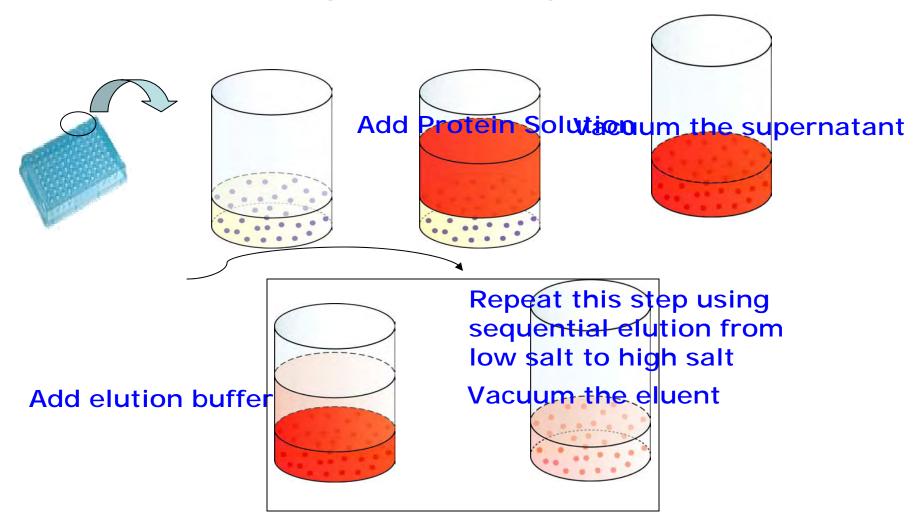
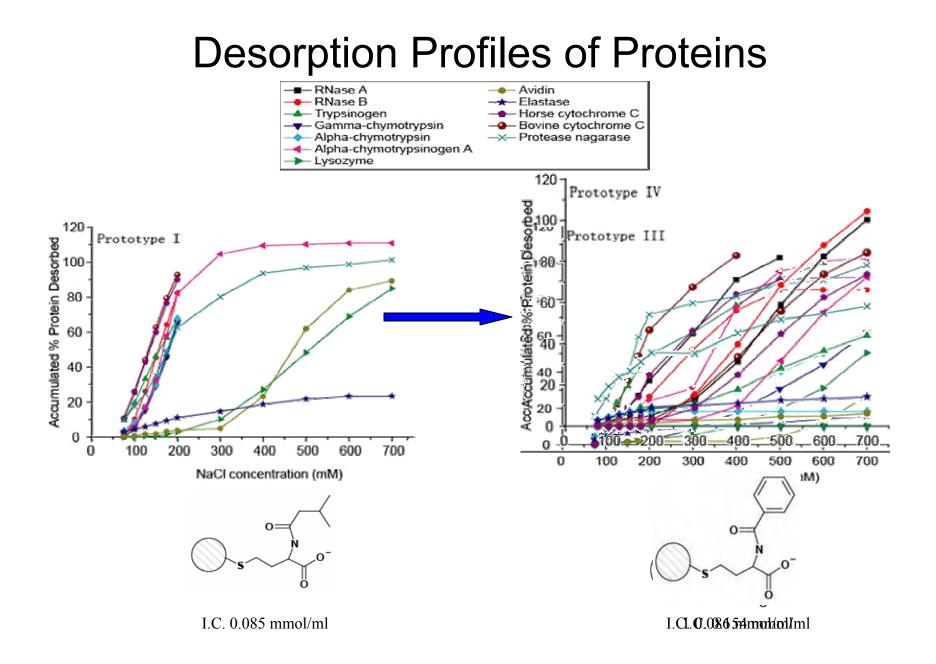
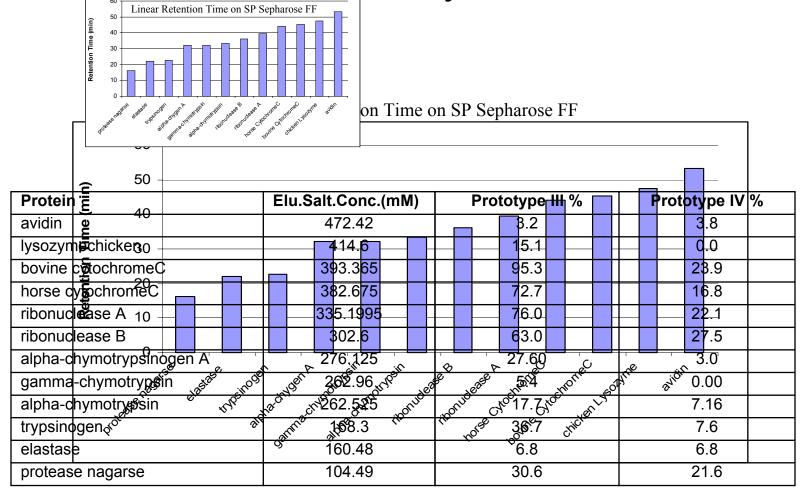
Quantitative Structure Property Relationship Models for Evaluating Mixed Mode Chromatographic Systems

Steven M. Cramer Isermann Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute, Troy, NY

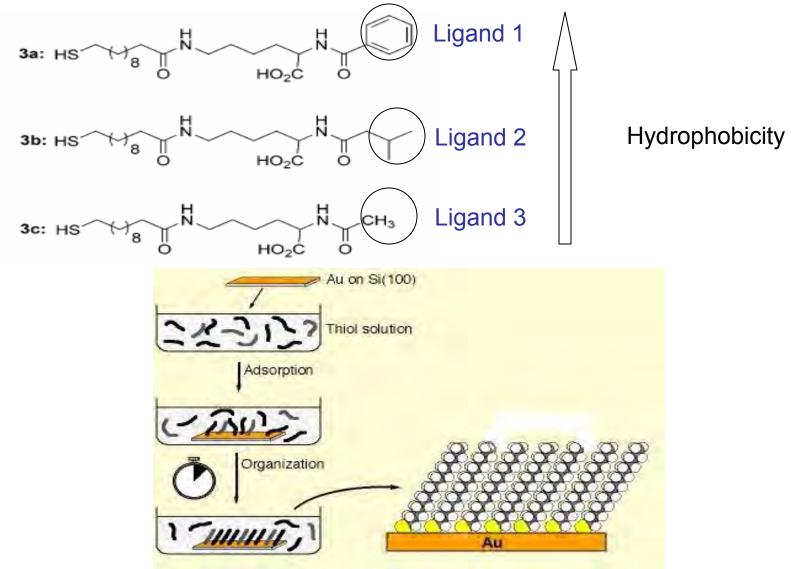

> Presented at MIXED MODE CHROMATOGRAPHY SCI International Headquarters London, UK


Outline


- Elution and SPR studies with mixed mode resins.
- QSPR investigation of mixed mode chromatographic systems.
- Other experimental and theoretical tools for studying these systems.

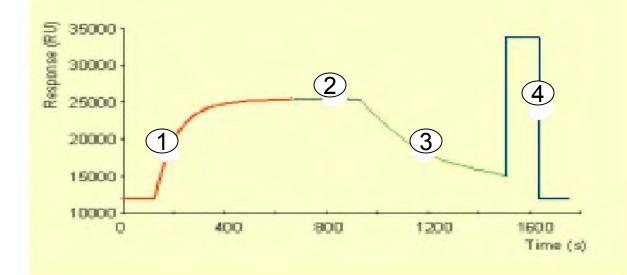


Batch Adsorption-Desorption Profiles



Effect of the Aromatic Ring on Protein Binding

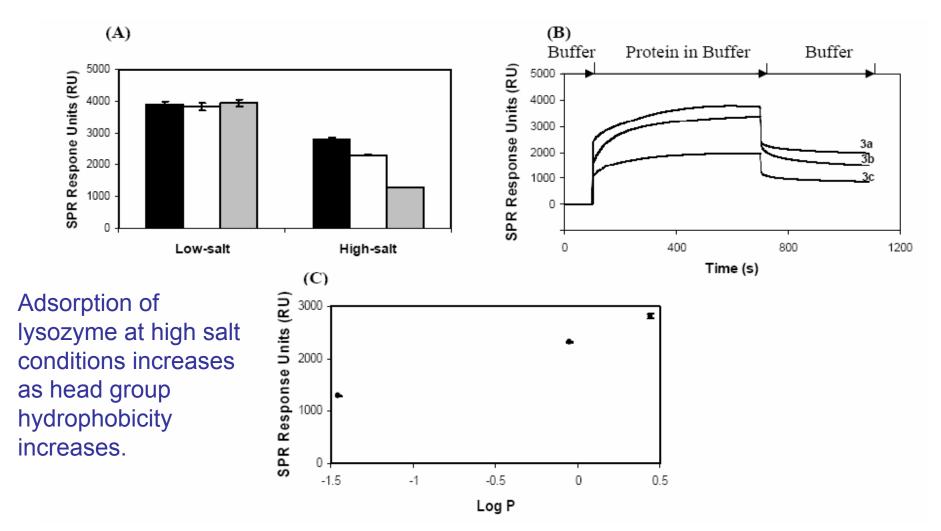
Binding Mechanism Investigation Using SPR


Hypothesis: Hydrophobicity plays important role in protein high salt binding

Kane et al. Langmuir 2006 22, 10152-10156

Biacore 3000 Spectrometer: Assay and Analysis

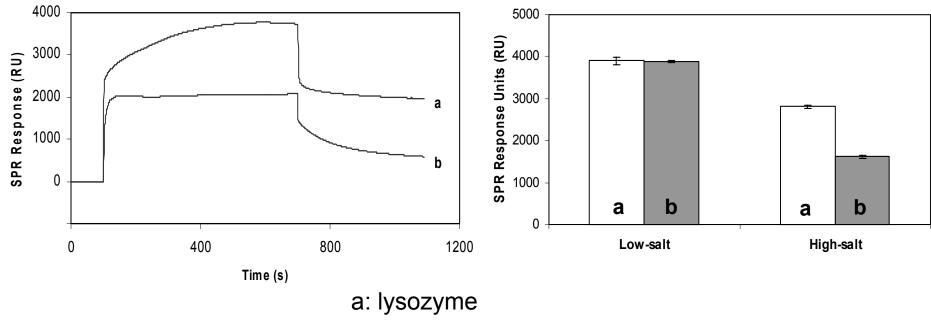
- SPR: Measures biomolecular interactions in a real time label free environment
- Biacore assay: Immobilization, Interaction analysis and Regeneration
- Sensogram: Plot of response against time


<u> </u>	\triangleright
Association	Steady State
7	
Immobilization	Dissociation
fine tuning	2
Miscellaneous	Regeneration
\checkmark	

- 1: Association
- 2: Steady state
- 3: Dissociation
- 4: Regeneration

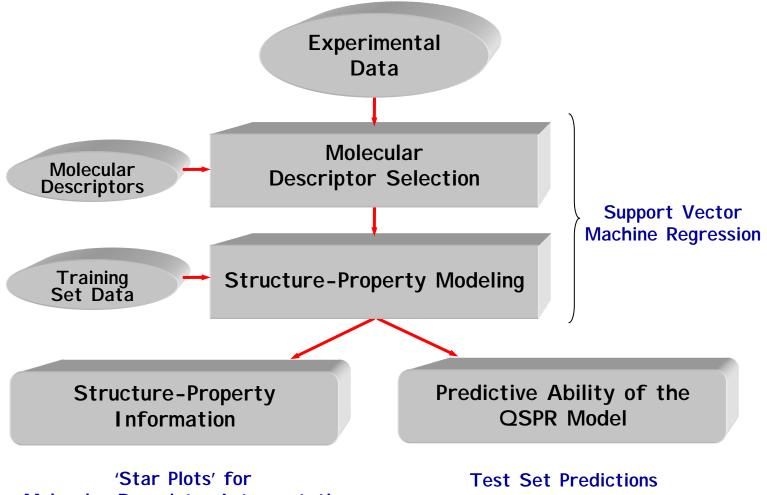
Multimodal surfaces: Structure and Characterization

Ligand	Log P	Contact	Ellipsometric thickness (Å)		
		Angle	Estimated	Measured	
$HS \xrightarrow{H}_{8} O \xrightarrow{H}_{HO_2C} O$	0.44	75.8 ± 2.7	25.1	24.5 ± 1.0	
$HS \xrightarrow{H}_{0} \xrightarrow{H}_{0$	-0.05	64.2 ± 1.4	23.1	22.5 ± 1.2	
$HS \xrightarrow{H}_{8} \xrightarrow{N}_{HO_2C} \xrightarrow{H}_{0} \xrightarrow{H}_{HO_2C} \xrightarrow{H}_{0} \xrightarrow{H}_{0}$	-1.46	52.5 ± 1.5	23.0	21.9 ± 1.6	

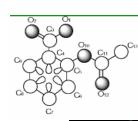

Interactions of Lysozyme with SAMs Presenting Multi-modal Ligands: Effect of Ligand Chemistry **3a:** Benzoyl; **3b:** Isovaleryl; **3c:** Acetyl

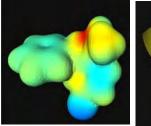
SPR experiments: Protein hydrophobicity

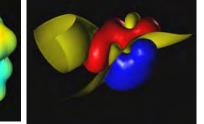
(A) SPR Sensograms

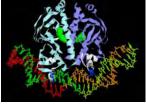

(B) Amount of protein adsorbed

b: horse cytochrome c

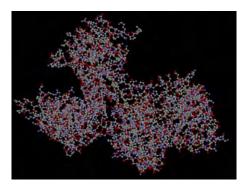

Greater hydrophobicity \rightarrow Higher binding


QSPR Modeling Flowchart



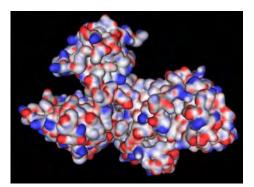

Molecular Descriptor Interpretation

Encoding Structure : Descriptors


AAACCTCATAGGAAGCATACCA GGAATTACATCA... Structural Descriptors Physiochemical Descriptors Topological Descriptors Geometrical Descriptors Constitutional Descriptors Electrostatic Descriptors Quantum-chemical Descriptors

Thermodynamic Descriptors

 $Molecular \\ Structures \longrightarrow Descriptors \longrightarrow Model \longrightarrow Affinity$


MOE Descriptors

- Classical physicochemical properties:
 - IogP, molecular refractivity
- Pharmacophore features:
 - the number of H-bond donor/acceptor atom
 - polar or hydrophobic surface area
- Property-mapped subdivided surface area:

3D protein crystal geometry

map partial charge on molecular surface

blue: positive; red: negative

www.chemcomp.com

TAE/RECON Descriptors

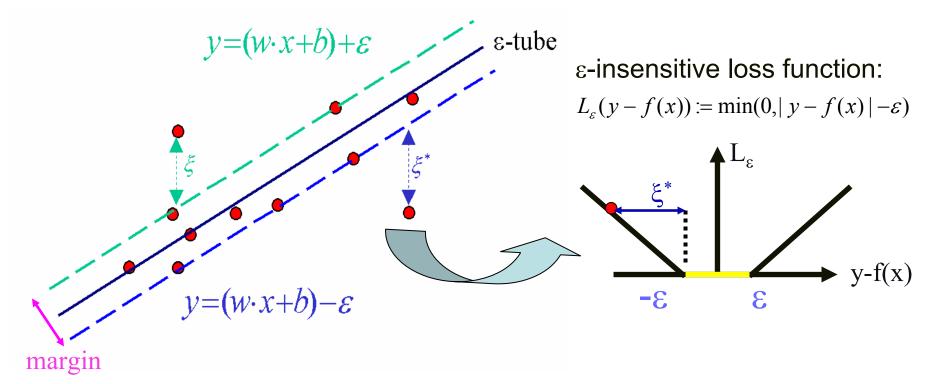
EP	Electrostatic Potential $EP(r) = \sum_{\alpha} Z_{\alpha} / r - R_{\alpha} - \int \rho(r') d(r') / r - r' $
Del(Rho)•N	Electron Density Gradient normal to electron density iso-surface
G	Electronic Kinetic Energy $G = -(\hbar/4m) \int \{\nabla \psi^* \cdot \nabla \psi\} d\tau$
Κ	Electronic Kinetic Energy $K = -(\hbar/4m) \int \{\psi^* \nabla^2 \psi + \psi \nabla^2 \psi^*\} d\tau$
Del(K)•N	Gradient of K Electronic Kinetic Energy normal to surface
Del(G)•N	Gradient of G Electronic Kinetic Energy normal to surface
Fuk	Fukui F ⁺ function scalar value $F^+(r) = \rho_{HOMO}(r)$
Lapl	Laplacian of the electron density $\nabla^2 \rho(r) = G(r) - K(r)$
BNP	Bare Nuclear Potential BNP $_{j} = \sum_{i=1}^{n} Z_{i} / r_{ij}$
PIP	Local Average Ionization Potential ${}^{i=1}PIP(r) = \sum_{i} \rho_{i}(r) \cdot \varepsilon_{i} / \rho(r)$

1. Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford Univ. Press, 1994.

2. Breneman, C.M.; Rhem, M. J. Comp. Chem. 18, 182-197, 1997.

pKa Estimation Methods for Acidic and Basic Amino Acids

- Null pKa (no microenvironment effects)
- Estimated pKa from various software. (e.g. What If, PropKa, MM_SCP)


Once pKa is estimated, Henderson-Hasselbach equation is employed:

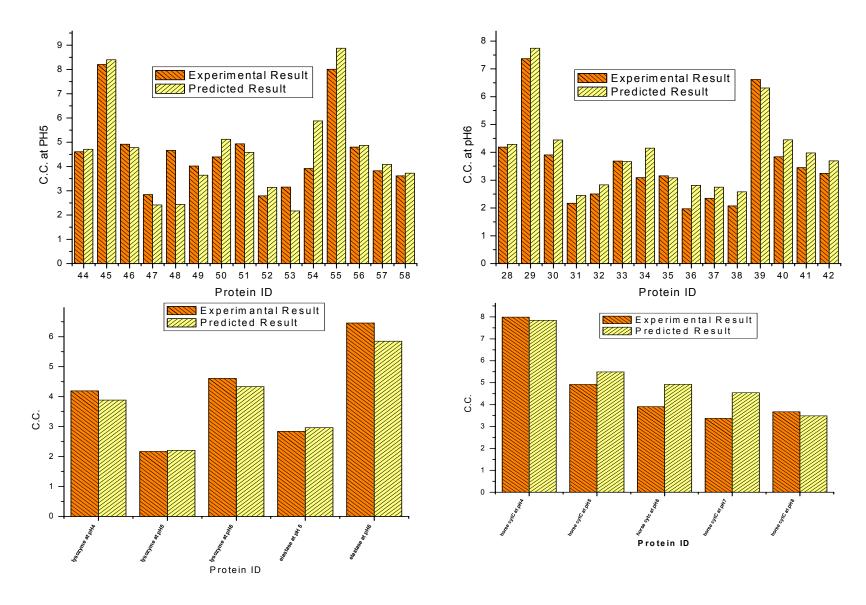
pKa=pH+log(protonated/deprotonated)

Support Vector Regression (SVR)

• Minimize the regularized empirical error:

 $\succ \text{ training error + model complexity} \min_{w, b, \xi_i, \xi_i^*} C \sum_{i=1}^l (\xi_i + \xi_i^*) + \frac{1}{2} \| w \|^2$

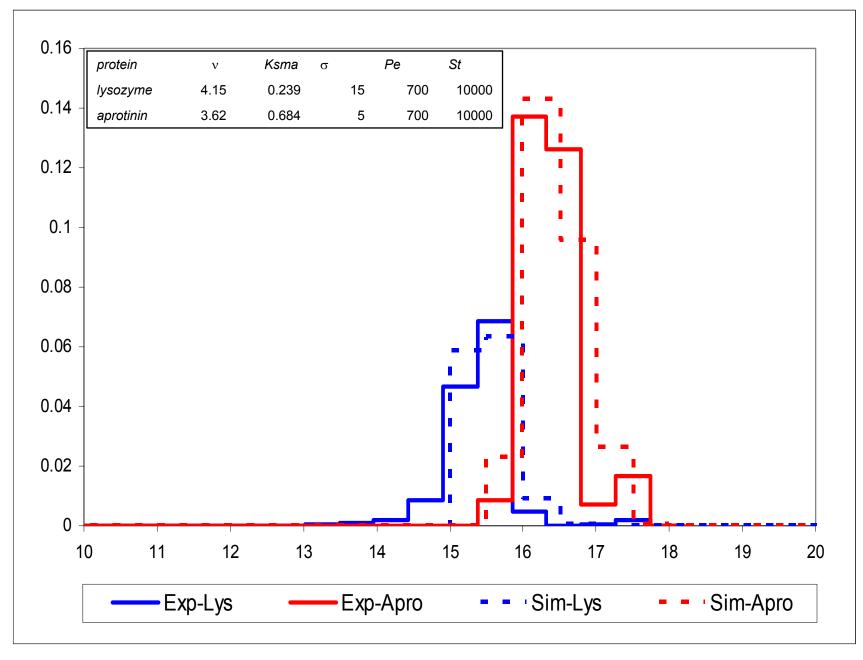
• Avoid overfitting by controlling the model complexity


QSPR Prediction Map

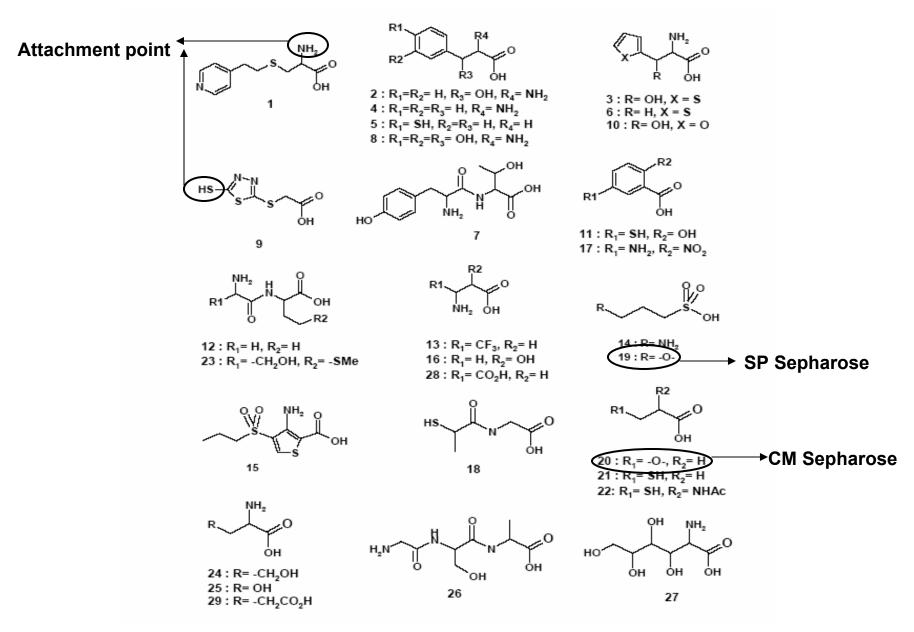
Experimental responses:

- 1. Retention volume
- 2. SMA parameters: characteristic charge and Ksma

pH4	pH5	pH6	pH7	pH8
Mol.1	Mol.1	Mol.1	Mol.1	Mol.1
Mol.2	Mol.2	Mol.2	Mol.2	Mol.2
Mol.3	Mol.3	Mol.3	Mol.3	Mol.3
Mol.4	Mol.4	Mol.4	Mol.4	Mol.4
Moi.5	Mol.5	Moi.5	Mol.5	Mol.5
Mol.6	Mol.6	Mol.6	Mol.6	Moi.6
Mol.7	Mol.7	Mol.7	Mol.7	Mol.7
Mol.8	Mol.8	Mol.8	Mol.8	Mol.8
Mol.9	Mol.9	Mol.9	Mol.9	Mol.9
Mol.10	Mol.10	Mol.10	Mol.10	Mol.10
Mol.11	Mol.11	Mol.11	Mol.11	Mol.11
Mol.12	Mol.12	Mol.12	Mol.12	Mol.12
Mol.13	Mol.13	Mol.13	Mol.13	Mol.13
	Mol.14	Mol.1 <mark>4</mark>	Mol.14	
	Mol.15	Mol.15		
	Mol.16	Mol.16		


QSPR Prediction of C.C.

QSPR Prediction of SMA Parameters at Any Given pH


p þ 4 4	рH5pH5pH6	p þ6 6.5	p # 17	pHHB
мdॅ <u>ॅ</u> [ө].1	Mol.1 Mol.1 Mol.1	Mol.1	Mahal.1	MARUI11
мd <u>Я</u> 21.2	Mol.2 Mol.2 /Mol.2	Mol.2	M9431.2	MRGH-22
мф !9 1.3	Mol.3 Mol.3 / Mol.3 \	Mol.3 <mark>?</mark>	Mqhal.3	MARCH 33
м₫₽ ^{I.4}	Mol.4 Mol.4 Mol.4	Mol _t 4 /	Mahali.4	MARG 14
мd ў.9 1.5	Mol.5 Mol.5 Mol.5	Mol.5	M94151.5	MARCH 55
м₫₿1.6	Mol.6 Mol.6 Mol.6	Mol.6	Mଦ୍ୟାଞିା.6	MARG-196
мd Ү.9 І.7	Mol.7 Mol.7 Mol.7	Mol.7	M94791.7	MARGH?7
мф <mark>.8</mark> 1.8	Mol.8 Mol.8 Mol.8	Mol.8	MQ481.8	MARG 188
м₫91.9	Mol.9 Mol.9 Mol.9	Mol.9	Mqh81.9	MARLA 99
м ტ	Mol.10 Mol.10 Mol.10	Mol.10	M94129.10	MARGH 190
мd Й@ <mark>4</mark> 11	Mol.11 Mol.11 Mol.11	Mol.11	M94131.11	MAR51.111
мd¶@ <u></u> 12	Mol.12 Mol.12 Mol.12	Mol.12	M9482.12	MR41172
<mark>мф<mark>Я</mark>ф<u></u>13</mark>	Mol.13 Mol.13 Mol.13	Mol.13	M9437.13	MARGH 1:P3
	Mol.14 Mol.14 Mol.14	Mol.14	Mqh3#14	Mol.14
	Mol.15 Mol.15 Mol.15	Mol.15	Mol.15	Mol.15
	Mol.16 Mol.16 Mol.16	Mol.16	Mol.16	Mol.16

Prediction of Protein Chromatographic Behavior at Any Given Condition

Mixed Mode Systems

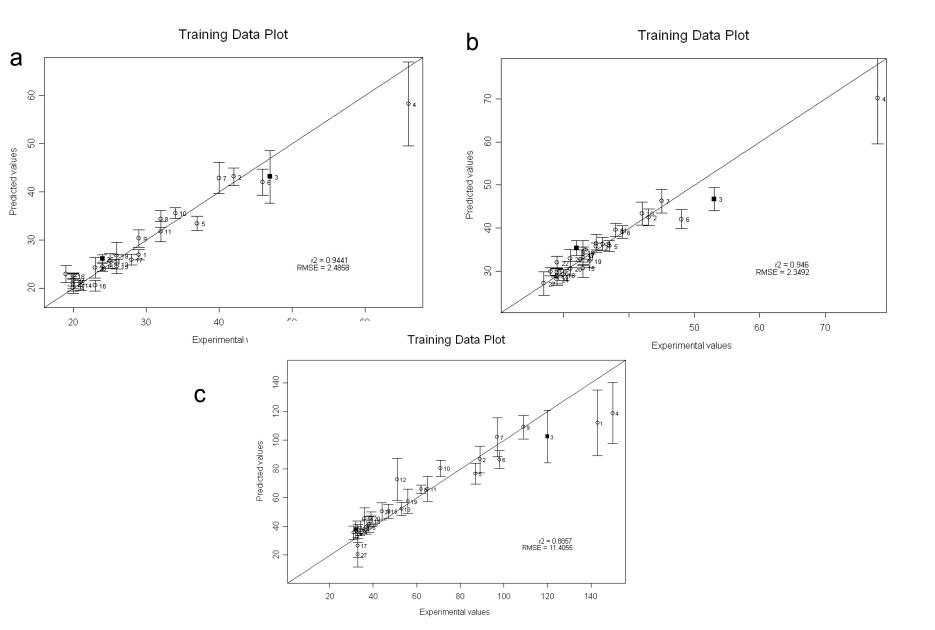
Candidates of High Salt Binding Ligands

Johansson et al. Journal of Chromatography A 1016 (2003) 21 & 35

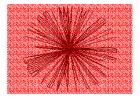
Functionality Screening-Linear Retention Time

Buffer A: 20 mM phosphate buffer, pH 6.8 Buffer B: 20 mM phosphate buffer+2M NaCl, pH 6.8

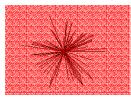
ILC				Observations:			
	Rib pl=9.4	Cyt c pl=10.2	Lys p				
1	29	35	143	1. Lysozyme generally has higher			
2	42	43	89	 Lysozyme generally has higher retention than RNAseA and Cyt C 			
3	46	48	98	recention than KNASEA and Cyt C			
4	47	53	120	2. RNAse and Cyt C which have no			
5	66	78	150	5			
6	40	45	97	retention in HIC system shows			
7	34	42	71	higher binding affinity on aromatic			
8	37	37	87	ligands			
9	29	36	109				
10	32	39	62				
11	32	38	65				
12	26	35	53				
13	24	33	47				
14	20	30	39				
15	26	34	56				
16	23	29	37				
17	26	33	51				
18	23	31	39				
19	19	32	32	→ SP Sepharose			
20	17	26	30	→ CM Sepharose			
21	25	33	44				
22	19	29	34				
23	21	29	36				
24	20	28	38				
25	20	29	33				
26	20	31	31				
27	20	27	33				
28	28	33	33				
29	24	32	32				

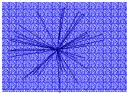

Johansson et al. Journal of Chromatography A 1016 (2003) 21 & 35

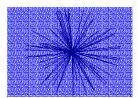
RNaseA	_Elution Co	nductivity	Cyt C_Elution Conductivity				Lysozyme_	_Elution Co	onductivity	
Ligand ID.	E.C.	Ring]	Ligand ID	E.C.	Ring		ligand ID	E.C.	Ring
20	17	Ν		20	26	Ν		20	30	Ν
19	19	N		27	27	Ν		26	31	N
22	19	Ν		24	28	N		19	32	Ν
14	20	Ν		16	29	N		29	32	N
24	20	N		22	29	N		25	33	N
25	20	N		23	29	N		27	33	N
26	20	N		25	29	N		28	33	N
27	20	N		14	30	Ν		22	34	N
23 C	bservat	ions:		18	31	Ν		23	36	N
¹⁶ 1		higher re	ten	tion ²⁶ 0cci	irred ¹ on a	romatic	rinc	16	37	N
18	23			19	32	N	1115	24	38	N
13	24	N		29	32	N		14	39	N
²⁹ 2	. Ligano	15 has th	e hi	ghest bii	nding affi	hity for a	ll th	ree prote	INS 39	N
21	25	N		17	33	Y		21	44	N
¹² 15 3				v hinding	affingity for		ΔΔ	and Cyt		N N
15 J							СЛ	anu ₁ yr		gn _y
17	affinity		ppno	poic₁prote	ein ly₅ozy	/me _Y		12	53	N
28	28	N	-	12	35	N		15	56	Y
1	29	Y	-	1	35	Y		10	62	Y
9	29	Y		9	36	Y		11	65	Y
10	32	Y		8	37	Y		7	71	Y
11	32	Y	-	11	38	Y		8	87	Y
7	34	Y		10	39	Y		2	89	Y
8	37	Y		7	42	Y		6	97	Y
6	40	Y		2	43	Y		3	98	Y
2	42	Y		6	45	Y		9	109	Y
3	46	Y		3	48	Y		4	120	Y
4	47	Y		4	53	Y		1	143	Y
5	66	Y		5	78	Y		5	150	Y

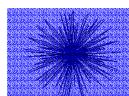

Ligand Based QSPR Models

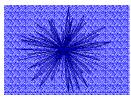
- Ligand structures were drawn in MOE and energy minimized.
- The ACD/pKa DB package (Advanced Chemistry Development) was employed to compute the pKa's of the charge centers on the ligand molecules. These pKa values were than used to assign the charges on the ligand molecules at pH 6.8.
- A set of 132 molecular descriptors were calculated based on the structures of these cation exchange ligands.
- The resulting descriptors were used to generate the QSPR models for predicting the elution conductivity of three test set proteins.
- Interpretation of the selected descriptors was employed to provide insight into the important physicochemical properties and structural characteristics required for protein binding under high salt conditions.


Predictions for Rnase A (a), Cyt C (b) and Lys (c)


QSPR model for elution conductivity of RNase A

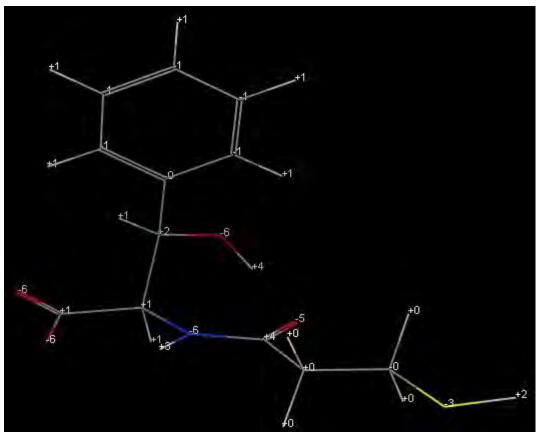

PEOE.VSA.1 +17.4%


Q.VSA.FNEG +12%


PEOE.RPC -10.6%

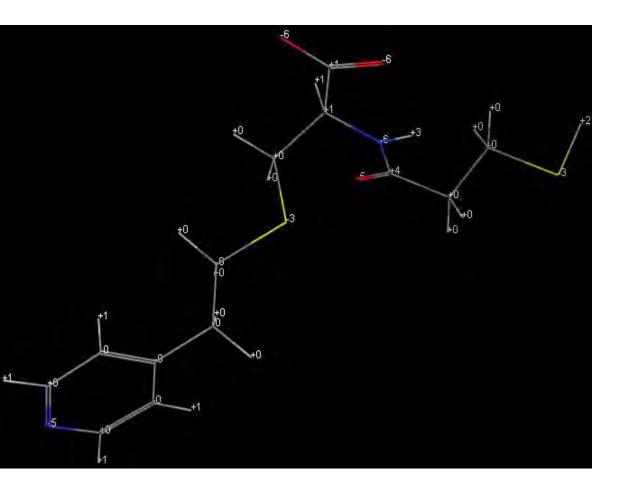
Q.VSA.FPOL -16.7%

SLOGP.VSA3 -20.9%

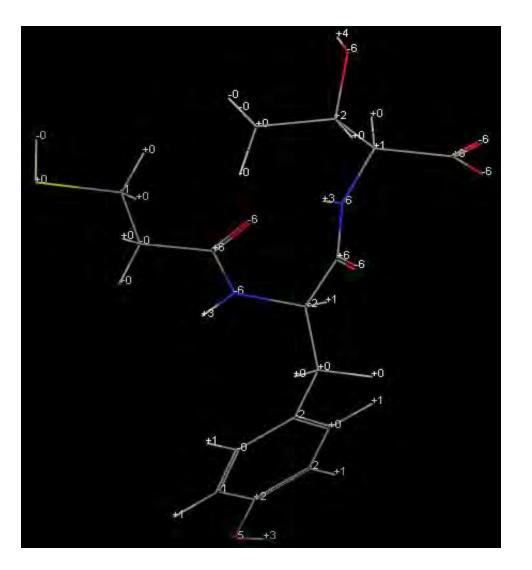

SLOGP.VSA4 -22.4%

PEOE.VSA 1 and Q.VSA F NEG had positive contributions and represent the negative partial charge at specific bin levels.

PEOE.RPC which represents the positive partial charge of the molecule, showed a negative contribution to the model.

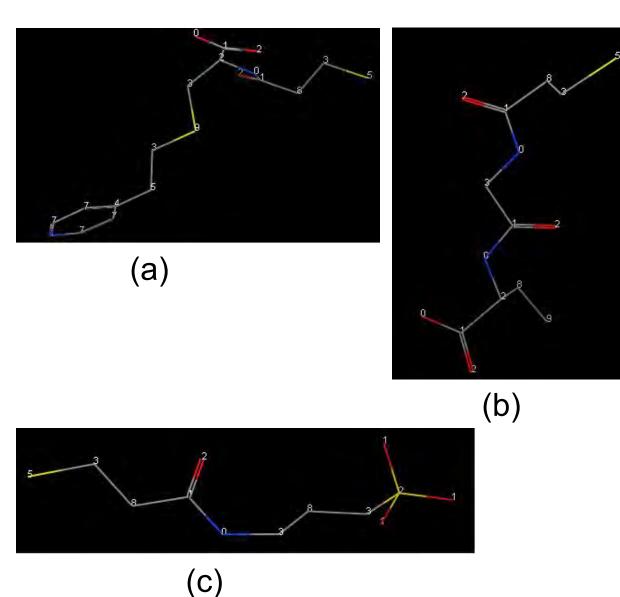

Q.VSA.FPOL represents the fractional polar surface area and had a negative contribution to the model. This is a surrogate for the presence of hydrogen bond donors on the ligands.

Descriptors SLOGP.VSA3 and SLOGP.VSA4 which represent intermediate levels of hydrophobicity were shown to be the most important negative contributors to the RNase A model.


Red: oxygen atom Blue: nitrogen atom Yellow: sulfur atom

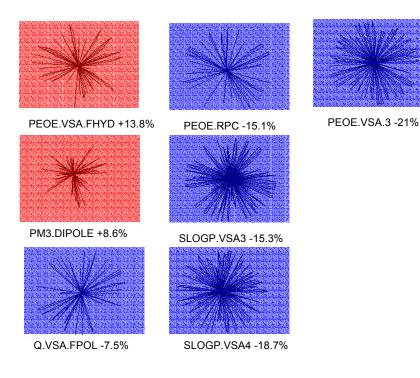
Descriptor PEOE.VSA.1 (PEOE.VSA-1) which was shown to be the most positive contributor to the Rnase A model was only assigned to the carbon atoms on the aromatic ring of the ligands.

Red: oxygen atom Blue: nitrogen atom Yellow: sulfur atom


Not every aromatic containing ligand had carbon atoms with descriptor values of PEOE.VSA.1

Red: oxygen atom Blue: nitrogen atom Yellow: sulfur atom

Q.VSA.FPOL which had a negative contribution to the RNAse model is a surrogate for the presence of hydrogen bond donors on the ligands (e.g. –NH and –OH) (i.e. atoms assigned with absolute numbers equal or greater than 4)


The structure of ligand 1(a), 12(b), 14(c)

Red: oxygen atom Blue: nitrogen atom Yellow: sulfur atom

The numbers associated with the atoms indicate the categorized bin of SlogP (index of hydrophobicity) of the atoms. Descriptor SLOGP.VSA3 was mainly associated with aliphatic carbons or carbons which were adjacent to sulfur atoms.

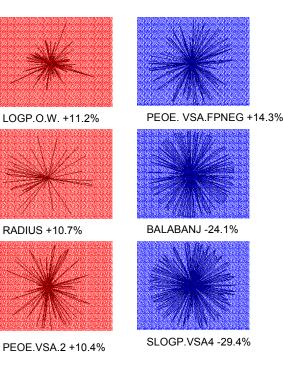
QSPR model for elution conductivity of horse cyt C

PEOE.VSA.FHYD represents the fractional hydrophobic van der Waals surface area. (positive contribution)

PM3.DIPOLE is the dipole moment of the molecule. (positive contribution)

Thus, both hydrophobic and electrostatic interactions are both important in this model.

PEOE.VSA.3 corresponds to the van der waals surface area with negative partial charge. (negative contribution)


Q.VSA.FPOL, PEOE.RPC, SLOGP.VSA3 and SLOGP.VSA4 showed negative contributions to the binding of cytochrome C (same as the RNase A model).

Red: oxygen atom Blue: nitrogen atom Yellow: sulfur atom

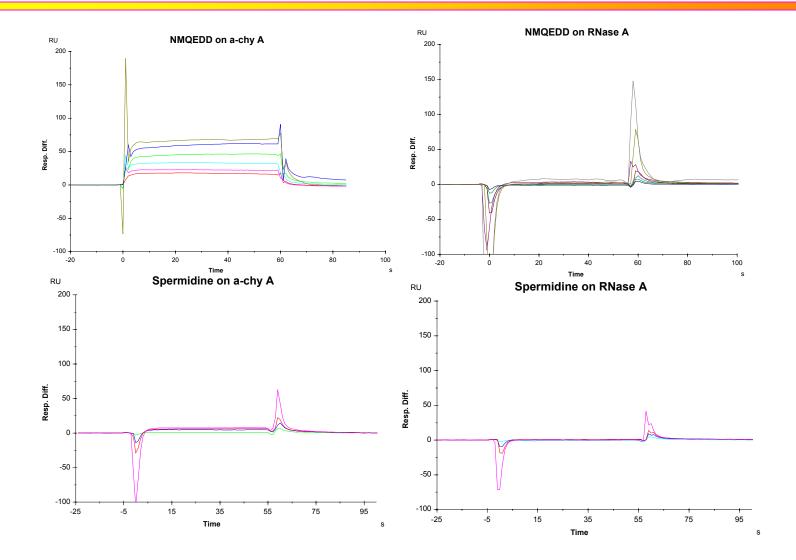
PEOE.VSA.3 is associated with sulfur and fluorine atoms in the aliphatic chains.

QSPR model for elution conductivity of lysozyme

LOG.O.W (the hydrophobicity of the ligand) was the most positive contribution (aromatic containing ligands had higher values of LOG.O.W. as compared to aliphatic containing ligands).

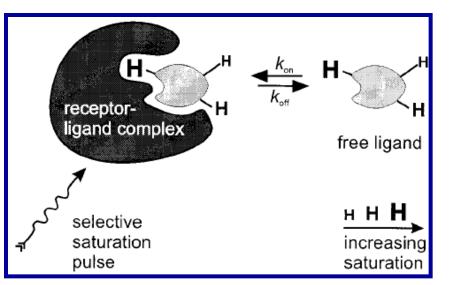
radius (a size related descriptor) had a positive contribution to the model (i.e. the larger the size of the ligand the stronger the binding).

PEOE.VSA.2 (a slightly negative partial charge) was a positive contributor. (note: aromatic substructures containing ligands having one or two associated sulfur atoms).

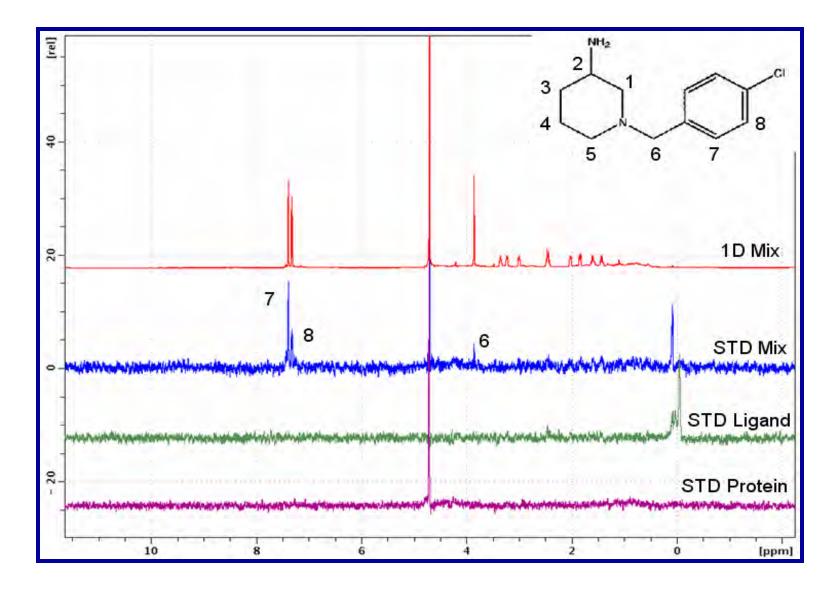

PEOE.VSA.FPNEG (fractional negative polar surface area) and was only assigned to structural components that could form hydrogen bonds with the protein.

BALABANJ increases with branching and the number of carbon atoms. Non-aromatic ligands had larger values.

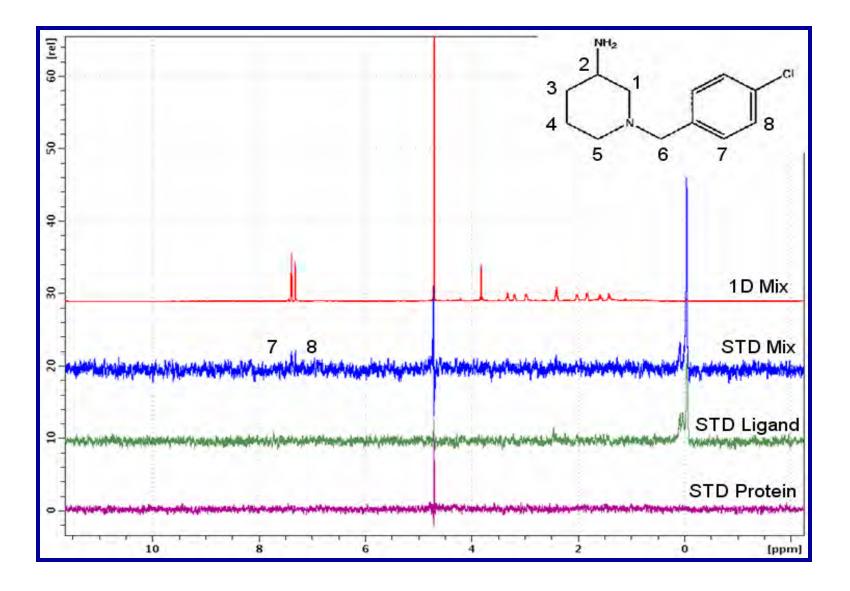
SLOGP.VSA4 associated with the carbon atoms on aliphatic chains

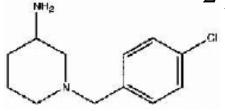

Other tools to study mixed mode systems.

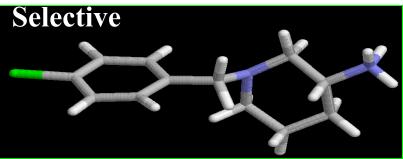
SPR analysis of chemically selective displacer



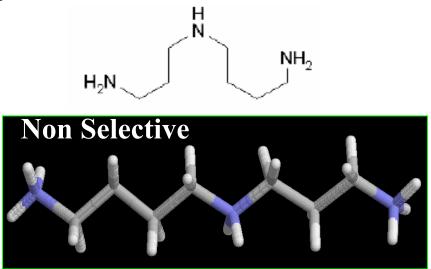
Saturation Transfer Difference (STD) NMR Experiment


- Selectively saturate your protein
- Spin diffusion spreads magnetism throughout protein (bonds)
- Dipolar coupling spreads magnetism to contacting ligand (space)


STD NMR Result: 1-(4-Chlorobenzyl)piperidin-3aminesulfate /Alpha Chy A

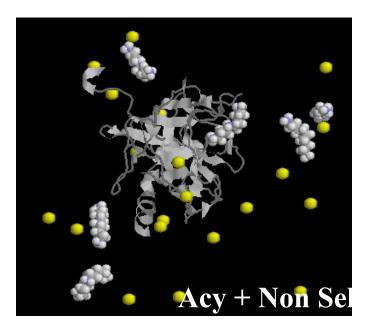


STD Result: 1-(4-Chlorobenzyl)piperidin-3-aminesulfate / Ribonuclease A

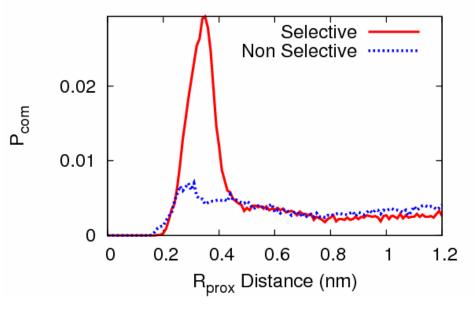

MD Simulation 2 proteins : α Chy and Rnase A

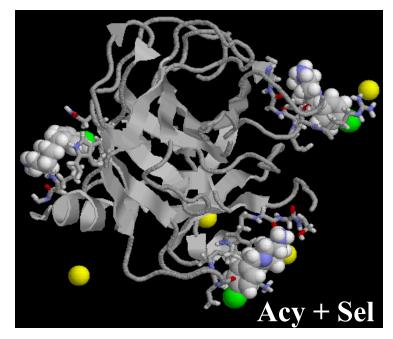
1-(4-Chlorobenzyl)piperidin-3-aminesulfate Simulation Parameters:

Non Bond, Bond, Angle etc: AMBER Charges: Not found in literature Chlorobenzene simulations, AMBER Total Charge: +1

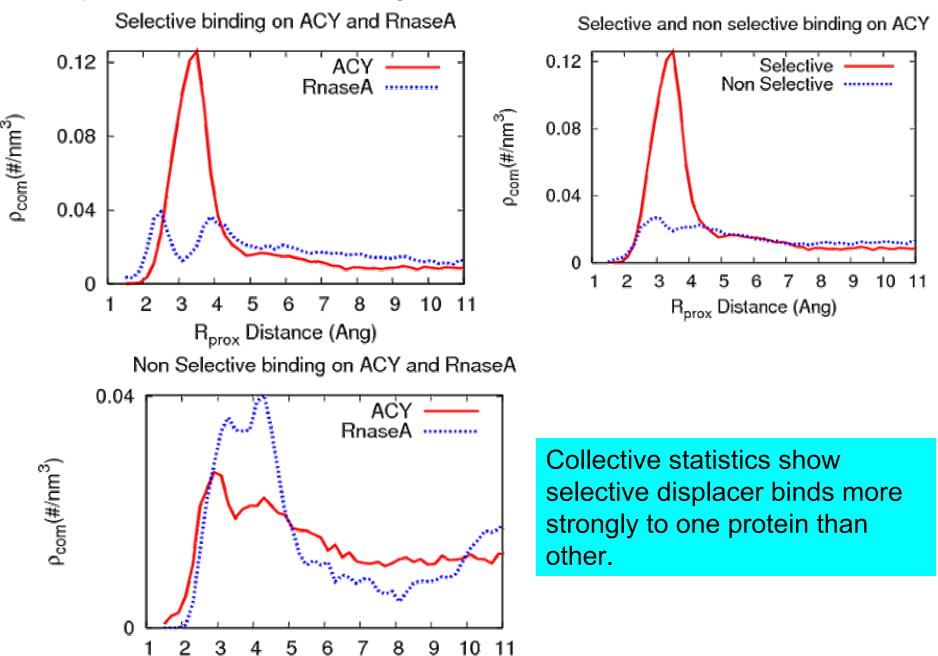


Spermidine

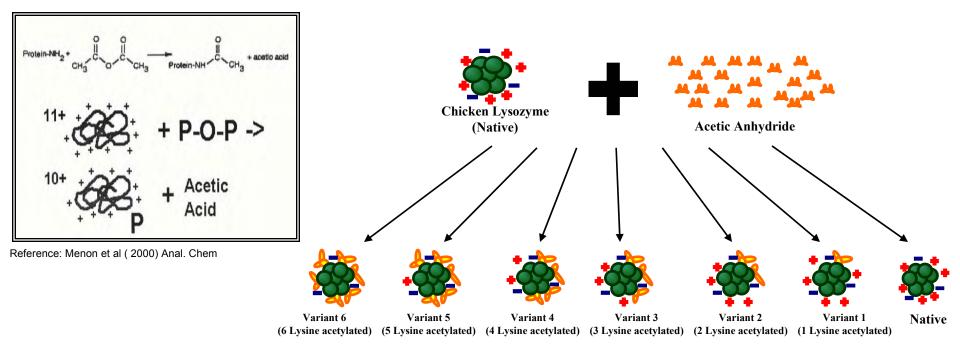

Simulation Parameters:


Non Bond, Bond, Angle etc: AMBER Charges: Korolev et al Total Charge : +3

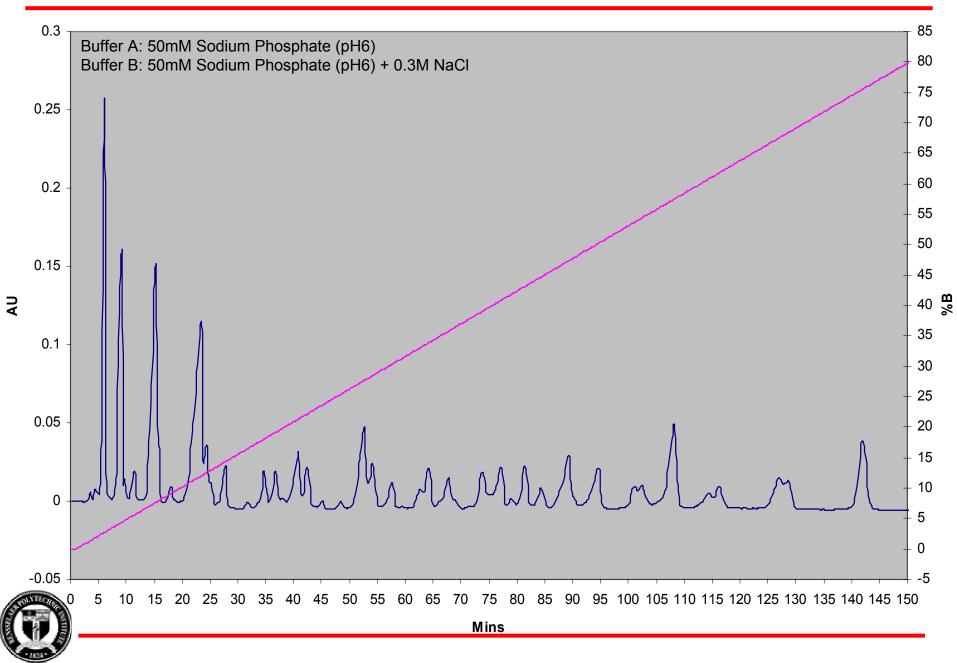
Simulation Results

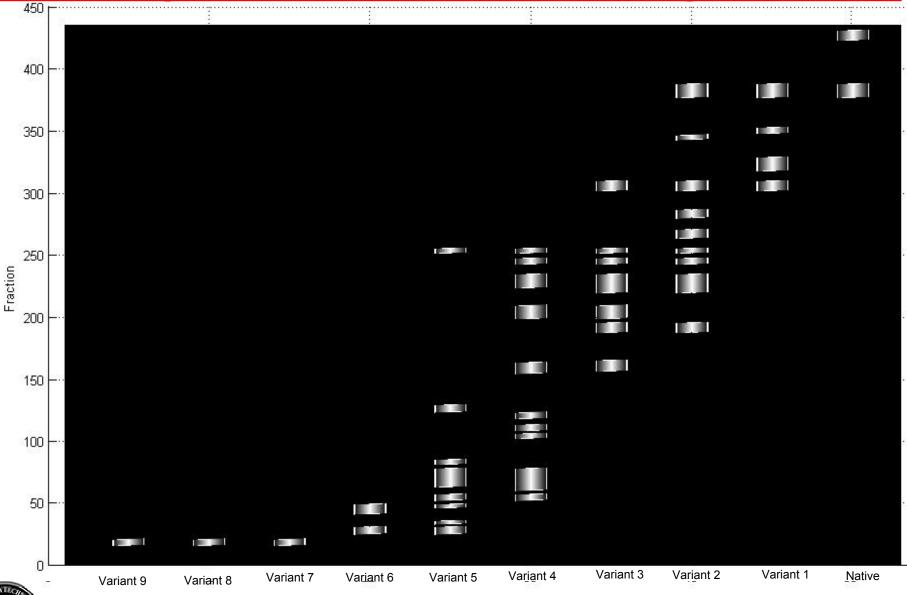


Selective and non selective binding on ACY



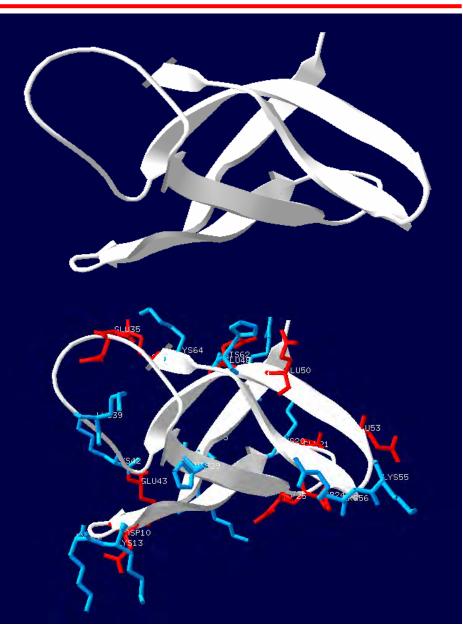
Displacer COM Density


Protein Charge Ladders


- > Involves functionalization of specific amino acids on protein surface with chemical modifiers
- Resulting variants differ by single units of charge
- > Gives a heterogeneous protein mixture with similar structure but varying charge distribution
- > Acetic anhydride used to functionalize surface lysine residues (6) of chicken lysozyme

SCX Analysis of Lysozyme Ladder Mixture

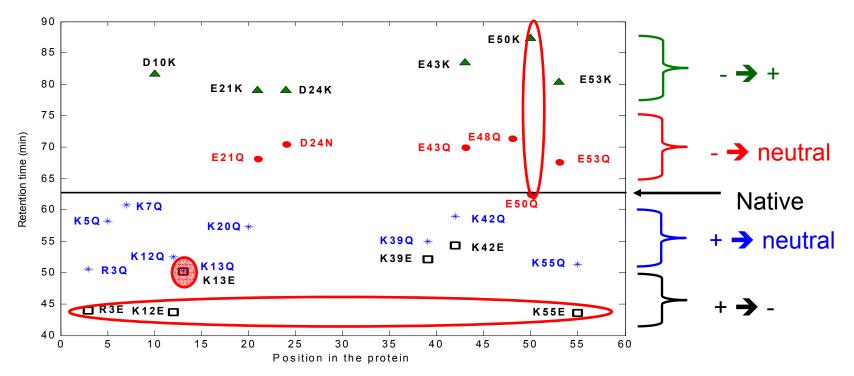
Charge Ladder Peak Assignment



Homologous Protein Library

Protein Selected:

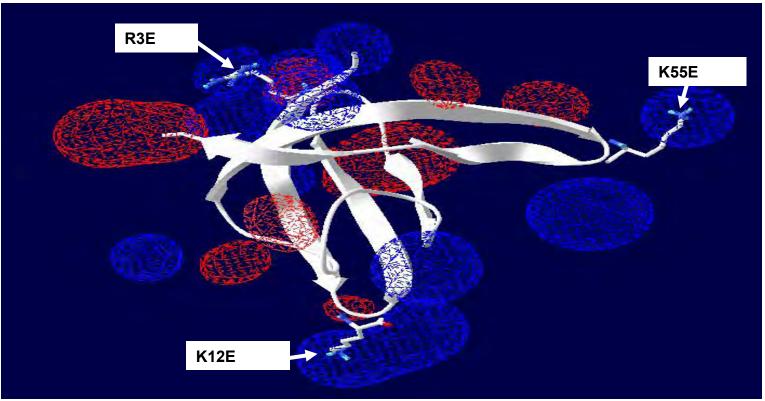
- Cold Shock Protein B (CspB)
- Mw: 7.373 kDa
- > No. of Amino Acids: 67
- Protein pl: 8.05 (Calculated)
- Extinction coefficient: 5,690 /M cm


Homologous Protein Library

Wild Type Template: M36G

Positive →Negative	Positive →Neutral	Negative →Positive	Negative →Neutral
R3E	R3Q	D10K	E21Q
K12E	K5Q	E21K	D24N
K13E	K7Q	D24K	D25N
K39E	K12Q	D25K	E43Q
K42E	K13Q	E43K	E48Q
K55E	K20Q	E50K	E50Q
	K39Q	E53K	E53Q
	K42Q		
	K55Q		

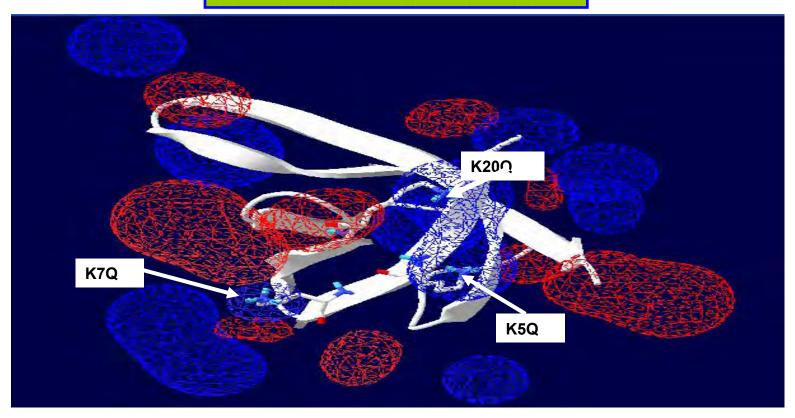
CEX Retention data for CspB mutants


- Neutralization of charge at position 50 had no effect on protein retention
- However alteration of the charge from negative to positive yielded a significant increase in retention time
- No appreciable difference was observed when the charge species at position 13 was neutralized or changed.

Changing the charge species at positions 3, 12 and 55 reduced retention time to similar extents

Effects of Mutation on Protein Binding

Positive → Negative


- Positions 3, 12 and 55 are located at protruding regions of protein surface
- Allows for interactions with resin surface at larger distances

Reversal of charge caused significant reduction in retention time

Effects of Mutation on Protein Binding

Positive → Neutral

• Positions 5, 7 and 20 surrounded by major negative charge clusters

Minimal interactions of these regions with resin

Summary

- QSPR can be employed to provide insight into the design of mixed mode chromatograhic systems.
- The selected features of these models illustrate the effect of multiple interaction mechanisms (charge, hydrophobicity and hydrogen bonding) on protein retention in multi-modal cation exchange systems.
- The aromatic ring can play an important role in promoting protein binding under high salt conditions.
- Regions of the ligands with negative partial charge also tend to promote high salt protein binding.

Summary (cont.)

- Moieties associated with intermediate hydrophobicity (e.g. aliphatic side chain) or the presence of hydrogen bond donors (e.g. NH and -OH) tend to suppress the binding.
- While the sulfur atoms were found to have a positive contribution to the lysozyme model, for the RNase A and cyt C models the sulfur atoms reduced binding affinity. Thus, while general trends can be observed for the design of high salt binding ligands, selective binding to various classes of proteins may require unique ligand design.
- Additional experimental and theoretical techniques such as protein ladders, mutant libraries, SPR, NMR, and MD simulations are potentially powerful tools for examining the behavior of mixed mode chromatographic systems.

Acknowledgements

- Students: Ting Yang, Matt Sundling, N.
 Sukumar, Wai Keen Chung, Chris
 Morrison
- Professors: Curt Breneman, Shekhar Garde, Ravi Kane
- Useful discussions: Gunnar Malmquist, Enrique Carredano
- Funding: NIH, NSF, GE Healthcare

