
Degumming of plant oils for different applications

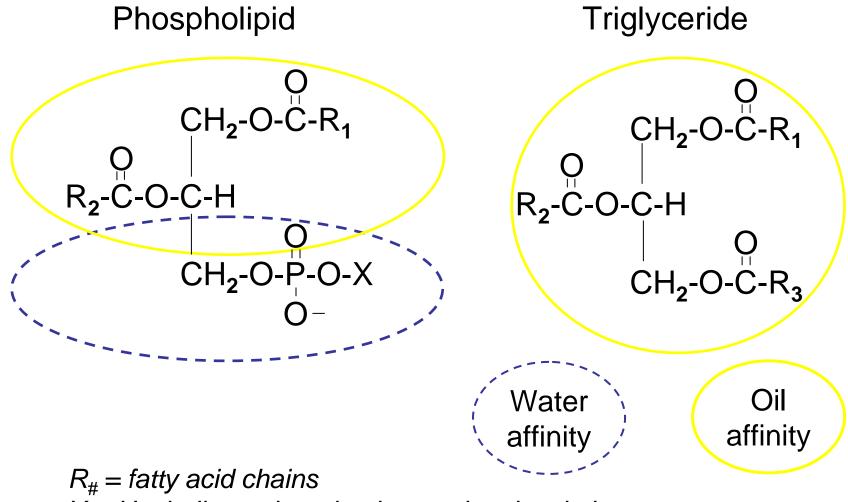
Dr.-Ing. Ernst W. Münch Cairo, 20th of March 2007 -Coordination of the degumming process

- -Classifications of the phospholipids
- -Impact of the degumming results to the conditioning process
- -Degumming processes water degumming acid degumming enzymatic degumming
- -Variable costs of these processes
- -Investment costs
- -Evaluation of the degumming processes
- -Summary

Gums from the degumming step contain:

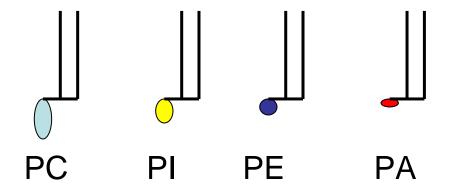
- Phospholipids
- Carbohydrates
- Proteins
- Metals
- Soaps
- Water
- Small parts of free fatty acid

Use of the gums:


- Production of lecithin
- Feed to the toaster of the extaction plant

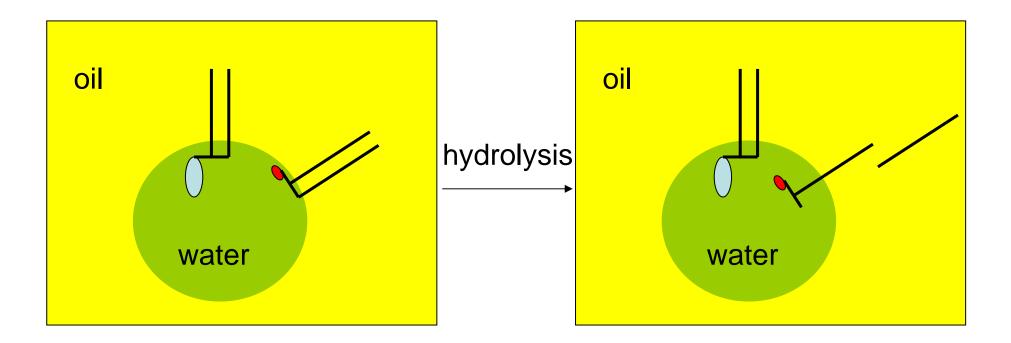
If a bleaching process will follow or it will be used as diesel substitut the results should be:

> P < 10 mg/kg oil Fe < 0.5 mg/kg oil


- Phosphatidic-Choline
- P. -Inositol
- P. -Acid
- P. -Ethanolamine
- P. -Serine

Lipids and water affinity

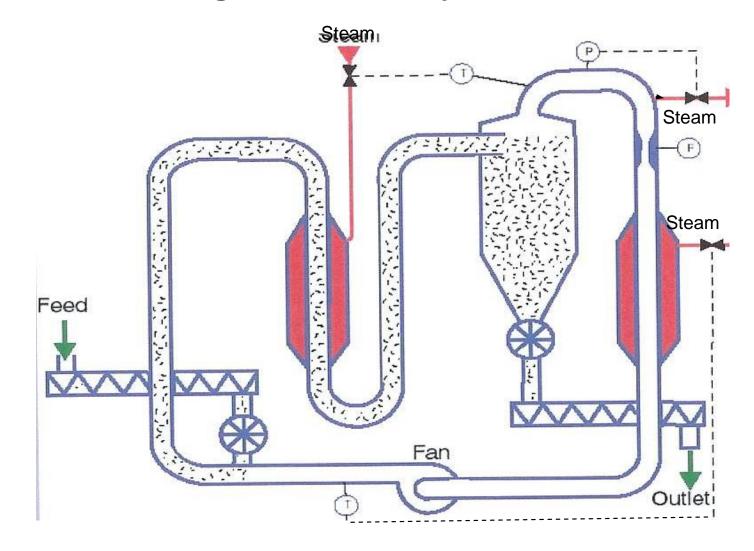
X = H, choline, ethanolamine, serine, inositol, etc.

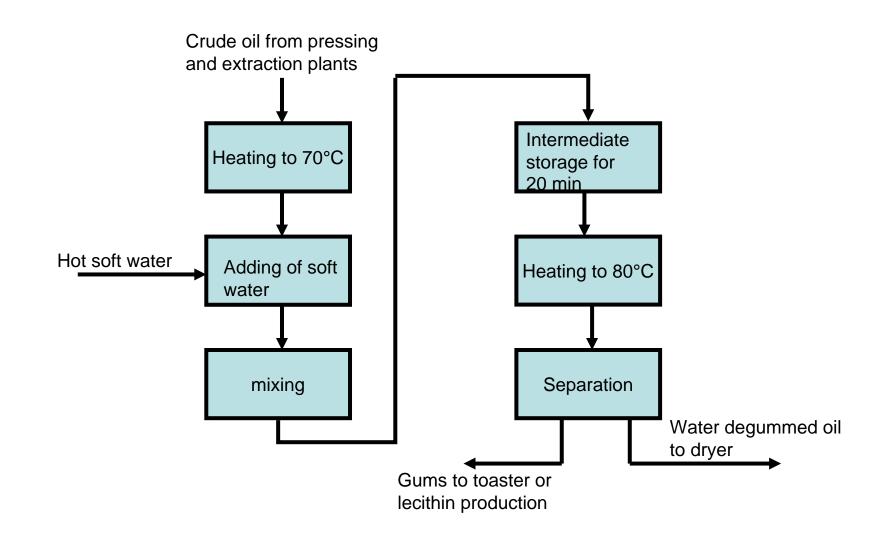

Model of the phospholipids

The groups on the phosphor differ in size and structure. The larger the group the more hydratable is the phospholipid

Lyso-forms of phospholipids are easier to hydrate

When phospholipid is hydrolyzed to lyso-form they become hydratable

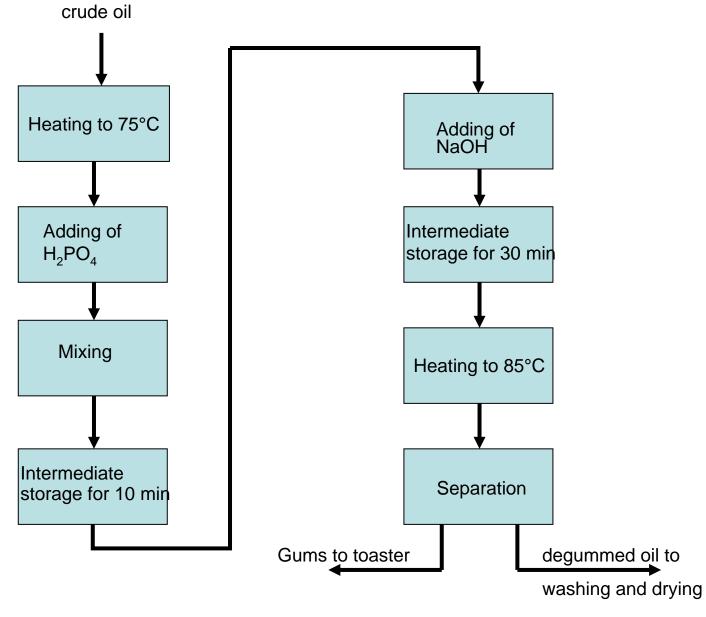



Splitting off a fatty acid makes the molecule more hydrophilic That makes the PA easy to hydrate and remove with the water phase

Comparison of three various seed conditioning plants of the oil quality after water degumming

	plant 1	plant 2	plant 3
Rape seed ffa (%) P (mg/kg)	0,98 31	0,78 21	1,02 19
Press oil ffa (%)	0,85	0,56	1,16
P (mg/kg)	50	9	108
Extraktion oil ffa (%) P (mg/kg)	1,37 74	1,17 11	1,50 101
Total oil ffa (%) P (mg/kg)	1,03 58	0,78 10	1,28 105

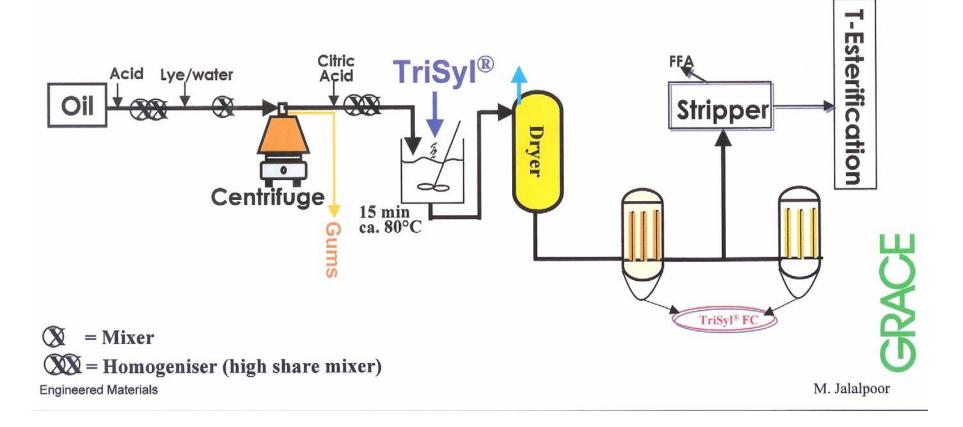
Conditioning of the Seed by HTST-Treatment



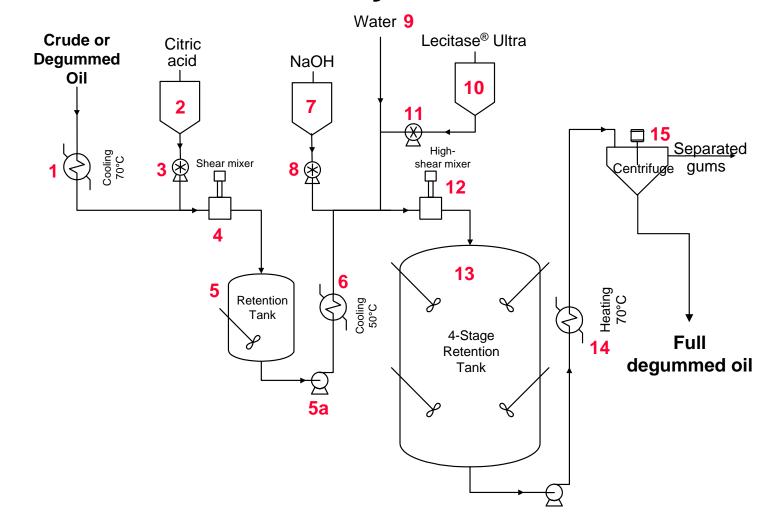
Water degumming process

P-content after water degumming

seed	process	P-content mg/kg oil
Soya beans	conventional extraction	< 200
	extraction with exergy process	< 12
Rape seed	conventional prepressing and extraction	< 250
	conditioning with exergy process	< 12
	finish pressing oil	< 150
	cold pressing oil	< 20


Acid degumming process

P-content of acid degumming process


	P – content in mg/kg oil			
seed	without washing	with washing		
Soya beans	< 50	< 20		
Rape seed	< 40	< 15		
Sunflower	< 40	< 15		

TriSyl® - Biodiesel Fuel Precursor Production Physical Refining

Filters should be first pre-coated with Clay or filter aid using clean oil

Degumming process of Soya and Rape with the Enzyme

Equipment List for Enzymatic Refining for a capacity of 450 t/d

Number	Process Equipment	Size, etc.
1	Heat exchanger	
2	Citric acid Storage	500 – 1000 I
3	Citric acid Dosing Pump	20 l/h
4	Shear mixer	
5	Retention tank	12 m ³
5a	Centrifugation pump	25 m³/h
6	Heat exchanger	
7	Caustic Tank	1.5 m ³
8	Caustic Dosing Pump	60 l/h
9	Water addition	500 – 1000 l/h
10	Enzyme tank	20
11	Enzyme Dosing Pump	13 ml/min
12	High shear mixer	
13	Retention Tank	100 m ³
13a	Oil Dosing Pump	25 m³/h
14	Heat exchanger	
15	Separator	

P – content of enzymatic degumming process

seed	P - content in mg/kg oil
soya oil	< 10
rape oil	< 10
sunflower oil	< 10

Variable costs and yields with the water degumming process

1. Water degumming process

Total		€ 1.46
soft water	0.02 m3	€ 0.03
cooling water	0.2 m3	€ 0.02
electricity	3 KWh	€ 0.21
steam	40 kg	€ 1.20

Yields:	98.0% for soya	98.9% for rape
	2.0%	1.1%
	gums in meal or for le	cithin production

Variable costs

2. Acid degumming

steam	60 kg	€ 1.80
electricity	5 KWh	€ 0.35
cooling water	0.2 m3	€ 0.02
soft water	0.03 m3	€ 0.05
waste water	0.05 m3	€ 0.15
lye (NaOH)	5 kg	€ 1.56
phosphoric acid	3 kg	€ 2.04
Total		€ 5.97

Variable costs

3. Enzymatic degumming

steam	60 kg	€ 1.80
electricity	5 KWh	€ 0.35
cooling water	0.2 m3	€ 0.02
soft water	0.01 m3	€ 0.01
waste water	0.04 m3	€ 0.12
lye (NaOH)	0.7 kg	€ 0.22
citric acid	0.7 kg	€ 1.89
enzyme	50 g	€ 1.75
Total		€ 6.16

Yields:

	acid	enzymatic
Soya	98.8%	99.1%
Rape	98.5%	98.8%
	for both degumming steps	
Soya	96.8%	97.1%
Rape	97.4%	97.7%
Lecithin or gums to meal and gums from 2nd step		

Soya	2.0% and 1.5%	2.0% and 1.1%
Rape	1.1% and 1.8%	1.1% and 1.4%

Comparison of the costs and yields of the degumming processes

Process	variable costs	rape yields	soya yields
Water degumming	1.46 €	98.9 %	98.0 %
Acid degumming	5.97 €	97.4 %	96.8 %
Enzymatic degumming	6.16€	97.7 %	97.1 %

Total degumming costs from variable costs and yields

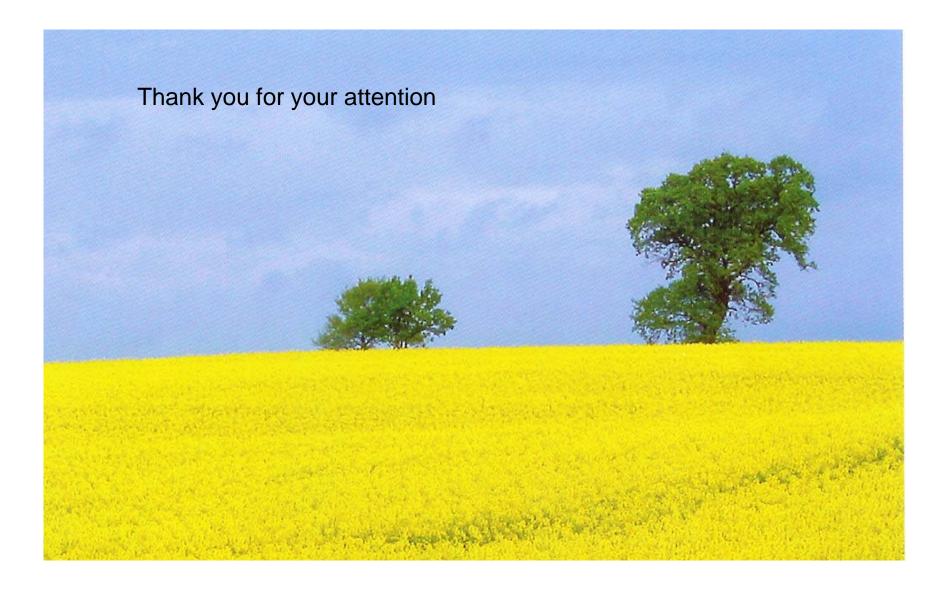
0.1 % of oil losses = 0.60 \in

Degumming process	Soya	Rape
Water degumming	13.46 €	8.06€
Acid degumming	25.17 €	21.57 €
Enzymatic degumming	24.56 €	19.96 €

Investment costs for a plant of a capacity of 800 t/d of oil

Costs per ton of oil by 3 years depreciation

Water degumming	680.000 € + 5.500.000 € 7.36 €/t	
Acid degumming with washing	1.260.000 € 1.50 €/t	
Enzymatic degumming	1.400.000 € 1.67 €/t	


Degumming processes and use of the oil

	Degumming process		
Use of the degummed oil	water deg. with Exergy	acid deg. with wash.	enzymatic deg.
Vegatable oil and foot Application	++	0	++
Biodiesel	++	+	++
Fuel	++	Ο	++

- ++ excellent
- + satisfying
- o sufficient

Conclusion

- -Plant oils have a lot of undesirable components
- -Part of these components can be removed by degumming processes
- -Exergy process and water degumming, acid degumming and enzymatic degumming were discussed and evaluated
- -variable costs and investment costs of the various degumming processes were benchmarked
- -further use of the oil is essential for the choice of the degumming process

