IEX 2008 Cambridge 8–9 July 2008

CONDENSATE POLISHING PLANT WITH SEPARATE BEDS EXCEEDS ALL EXPECTATIONS

Karol Daucik

DONG Energy A/S

Denmark

Traditional CPP

C - MB

Advantage

Continuous full flow operation

Reliable

High purity condensate

Good kinetic properties

acidic conditions

Disadvantage

Difficult automation

Leachables from cation resin

- reheater corrosion
- SCC in LP turbine

New generation

Target

Keep all the advantages Reduce the disadvantages

Means

New concept - C - A - (C)Resin choice Operational efforts

Counter current regenerated CPP

Calculation of the leachables release

Assumption – C_{trail} by-passed > 90 % of the time -50 % of C leachables retained by A

C – MB -42 % enter the cycle

C - A - (C) -36 % enter the cycle

Calculated reduction at least 15 %

Experience $-C_{trail}$ by-passed > 99 % of the time

Realised reduction at least 21 %

Resin choice

OSA test – All the resins were OK
Kinetic of anion resin (MTC) – No difference
Leachables of cation resin –

Producer	Product	Unit SKV	Unit NJV
1	Sample A	7	-
2	Sample C	16	-
1	Supplied A	25	-
1	Sample B	-	23
2	Sample D	-	8
2	Supplied D	-	15

Operational efforts

Initial leachables – Pre-treatment

Stand-by rinse — Daily rinse with 2 BV

Brine cleaning – After 5 years operation

Operational experience

Performance test

- Capacity C_{lead} resin 1 & 1.1 eq/L
- Kinetic of A resin
- Ionic leakage < 0.3 μg/L typically
- Organic carbon leakage- <10 μg/L typically

Survey of 10 years operation

- Ionic leakage from C_{lead}
- Ionic leakage from A $< 0.3 \mu g/L$ typically

Kinetic test of CPP

Average leakage in the first year of operation

	Sample	Co-flow regenerated			Reverse-flow
	after	Lead Cation	Anion	Trail Cation	Anion
	No.	50	50	3	
Conductivity	μS cm ⁻¹	0.126	0.057	0.058	0.126
Fluoride	μg L ⁻¹	0.4	0.1	0.1	
Acetate	μg L ⁻¹	0.6	0.5	0.3	0.5
Format	μg L ⁻¹	0.3	0.2	0.3	0.5
Chloride	μg L ⁻¹	0.6	0.3	0.7	< 0.1
Sulfate	μg L ⁻¹	0.3	0.2	0.7	< 0.1
Sodium	μg L ⁻¹	0.2	0.1	0.1	0.3*
Ammonium	μg L ⁻¹	3.8	3.3	0.5	
Magnesium	μg L ⁻¹	0.1	0.0	0.0	
Calcium	μg L ⁻¹	0.2	0.1	0.6	

Organics in condensate

Time	Volume	TOC (µg L ⁻¹)			
(min)	(m^3)	Raw Cond.	After lead C	After A	After trail C
2	8	57	51	31	62
11	55		54	47	27
14	76	58	50	53	27
16	86	28	38	53	
23,000	36,000		< 10	70	
32,000	66,000		< 10	< 10	
67,000	138,000	11	11	10	10

C-A-(C) versus C-MB

- C − A − (C) is simpler to regenerate
- C − A − (C) is simpler to automatize
- C − A − (C) gives lower ionic leakage
- C A (C) release less organic leachables
- No difference in kinetic properties
- C − A − (C) has slightly higher capital costs
- C − A − (C) has slightly lower operating costs

Conclusion

- C A (C) superior concept
- High quality CPP
- Robust and reliable
- Simple automatisation
- Low manpower requirement
- Justified investment