Is Europe in Harmony?

How the Harmonised Asphalt Standards are being implemented across Europe

Implications for Test Equipment Manufacturers

Keith Cooper. Cooper Research Technology Limited

Decisions

• Do we make EN equipment?

Once a new technology rolls over you, if you're not part of the steamroller, you're part of the road

EN 12697-25 Stiffness (IT-CY)

3

EN 12697-25 Cyclic compression

EN 12697

32 Wheeltracking Small size device – Procedure B Smooth steel roller

22 Slab compaction

French mixture design procedure

EN 12697-22 Wheeltracking

Large size device

6.1.1.4 The rolling load applied to the test specimen shall be (5000 ± 50) N at the centre of the test specimen, measured <u>at</u> <u>least</u> when the device is static.

EN12697-33 Slab compaction

Pneumatic tyred slab compactor

Which equipment do we make? BS EN12697-26 Stiffness - Test methods

Table 2 - Form and mass factors for different specime

EN12697-24 Fatigue

Four point bending

D.2.1 Test machine (Four point bending fatigue)

Equipment that shall be capable of applying a <u>sinusoidal</u> load to a specimen by a suitable mechanism via two inner clamps mounted on the specimen (Figure D.1). The frequency of the load, *f*o, shall be in the range <u>0 to 60</u> Hz with an accuracy of <u>0,1</u> Hz.

EN 12697 – 24 Resistance to fatigue

3 Terms, definitions, symbols and abbreviations

3.5 Four-point bending test	on priemotio abonad anao	imone		
3.5.1 (complex) stiffness mo ratio $S = S_{mix,n} \circ e^{0}$ of the c NOTE The stiffness n subjected to sinusoidal load 3.5.2 initial (complex) stiffne values for the initial mod ϕ_{0} in degrees of the com 3.5.3	3.5.6 standard deviation of natural logarithm of the $Sr_{j,k} = \frac{1}{(m-1)} \times$	El 3.) wi dii cla	3.2 Two-point bending test on trapezoidal specimens 3.2.1 constant relative to maximum strain constant that enables the head displacement z of the trapezoidal specimen of dimensions [<i>B</i> , <i>b</i> , <i>e</i> , <i>h</i>], to which a bending strain level ε is applied, to be converted into maximum strain NOTE \mathcal{K}_{e} and its relationship with the parameters mentioned above is the following: $\mathcal{K}_{e} \times z = \varepsilon$ (1)	EN 12697-24:2004 (E) mass of the moving parts of the sensor, in grams (g)
fatigue life $N_{i,jk}$ number of cycles for sp $j = \pi/60$, at the set of te level, or constant force le 3.5.4	3.5.7 total length L_{tot} total length of the prisn 3.5.8 effective length L	3.: ec we value di	$\mathcal{K}_{\mathcal{E}} = \frac{B^2 \times (B-b)^2}{4b \times \hbar^2 \times \left[(b-B) \times (3B-b) + 2B^2 \times \ln[\frac{B}{b}] \right]} $ (2) epends on the place with the second	equivalent mass, in grams (g) ength of life for specimen number <i>i</i> the chosen failure criteria <i>j</i> and the set of test conditions <i>k</i> es number of load applications at conventional failure when the modulus of the (complex) ness modulus has decreased to half its initial value
test condition <i>k</i> set of conditions at wh temperature Θ and the energy per cycle) 3.5.5 average fatigue life of a	distance between the t 3.5.9 width <i>B</i> width of the prismatic s 3.5.10 height <i>H</i>	3.) ec we	EN 12697-24:2004 (E)	level of the loading mode test condition corresponding to 10^6 cycles for the fatigue life ling to the chosen failure criteria, k confidence interval relative to Q nitial value of the calculated modulus
value defined according $\overline{N_{2}} = \frac{e^{i = 1}}{\sum_{k=1}^{m} \ln (N_{i})}$	height of the prismatic 3.5.11 mid-span length a distance between the t	or	The symbols are as follows, with a strain of 1 microstrain (ustrain) being equal to 10 ⁴ by convention: <i>i</i> is the Index of the specimen for an element test (varies from 1 to <i>n</i>)	estimation of the standard deviation of the residual dispersion of the natural logarithms of thes, $\sigma_{\rm ev}$ soefficient for the system losses in the interpretation equations for Young's modulus
14	3.5.12 co-ordinate <i>A</i> distance between the k	3./ de an dis	 h_i is the height, in metres (m) B_i is the large base, in metres (m) b_i is the small base, in metres (m) 	requency of the sinusoidal load applications slope of the fatigue line correlation coefficient of the regression
	3.5.13 co-ordinate x distance between x an 3.5.14 co-ordinate x	3. fo an 3.	 e, is the thickness, in metres (m) v₁ is the void content of the specimen <i>i</i> by geometric method, in per cent (%) 	distance from end of sample, in millimetres (mm) distance from the end of the specimen to where the sensor is placed, in millimetres (mm)
	co-ordinate x where the 3.5.15 density p geometrical density of	fre fre	 as the constant, relative to the maximum scant, in inverse metres (m); a; is the amplitude of displacement imposed at the head of specimen <i>i</i>, in metres (m); a; is the maximum relative strain of specimen <i>i</i> corresponding with the displacement imposed at the head 	nitial strain amplitude measured at the 100° load cycle est frequency test temperature, in degrees Celsius (°C)
	$\rho = \frac{M_{\text{berm}} \times 10^9}{(H \times L \times B)}$	3. in di	N_i is the conventional fatigue life of specimen <i>i</i> a is the ordinate of the fatigue line according to the equation $\log(N) = a + (1/\delta) \log(c)$	res (mm)
	total mass M _{been} total mass of the prism 3.5.17 damping coefficient 2	3.: da dii th	 r2 is the linear correlation cofficient (log(N), log(c_i)) 1/b is the slope of the fatigue line log(c) is the average value of log(c_i) 	being tested, in millimetres (mm) tres (mm) n millimetres (mm)
	coefficient needed for (NOTE This coefficie modulus and (material) p zero value).		$S_{log(c)}$ is the standard deviation of log(ϵ_i) $S_{log(0)}$ is the standard deviation of log(N_i) ϵ_0 is the strain corresponding with 10^6 cycles	llimetres (mm) ut the masses of the mounted clamps, in grams (g) the mass of the adhesive, and the mass of the load
		16	$z_{\rm N}$ is the estimation of the residual standard deviation of the decimal logarithms of fatigue lives $\Delta e_{\rm e}$ is the quality index of the test	s (g)

Two point bending test equipment

BS EN 12697-26 Stiffness

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1.1

complex modulus

relationship between stress and strain for a linear visco-elastic material submitted to a **sinusoidal** load waveform at time, *t*, where applying a stress $\sigma x \sin(\omega t)$ results in a strain $\varepsilon x \sin(\omega x (t - \phi))$ that has a phase angle, ϕ , with respect to the stress.

Sinusoidal or not sinusoidal?

Two point trapezoidal bending

Loading strips

The three Rs

- Reliability
- Repeatability
- Reproduceability
- = Round robin te