
Assessing the Risk Innovation by Peter C Hewlett* Communication Conference 1-2 September 2008 Liverpool, UK

*Group Technical Advisor, Doyle PLC, previously Principal Consultant, British Board of Agrément Visiting Industrial Professor, Division of Civil Engineering, University of Dundee President of The Institute of Concrete Technology

"No construction project* is free of risk.

Risk can be managed, minimised, shared, transferred or accepted. It cannot be ignored"

Sir Michael Latham (Godfrey 2004)

*For this work project should read product.

FMEA-Analytical but qualitative-Interfaces and interactions-Consider what is at risk

How could a component fail? What would cause a component to fail? What are the consequences of component failure? How serious are these failure scenarios? Can incipient failure be identified?

FMECA

- Prioritises interactions from FMEA
- Rank the effects in order of importance (criticality)
- Identifies where information may be needed
- Can indicate preventative action at design and installation stage
- May highlight a failure even sequence

The level of risk is the product of 3 factors:

Probability of failure

Severity of failure

Likelihood of detection (before damage is evident)

Level of risk = probability x severity x detectability

A range of 1-5 may be attributed to each factor

Level of Risk = Risk Priority Number (RPN)

Maximum Score	=	5 x 5 x 5
	=	125
Low Risk	=	1 – 40
Definite Risk	=	40 - 80
Unacceptable Risk	=	80 – 125

Probability of Failure

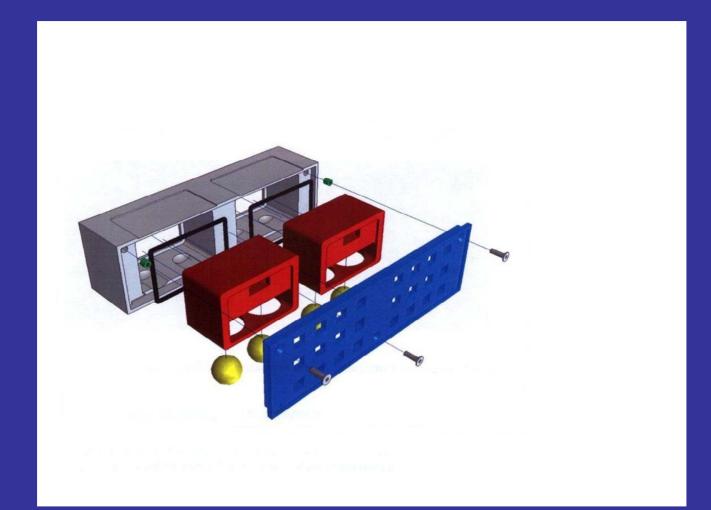
Level/score	Extent	Description
5	Frequent	Likely to occur frequently
4	Probable	Likely to occur several
		times in the product life
3	Occasional	Likely to occur sometime
		in the life of a product
2	Remote	Unlikely to occur but
		possible
1	Improbable	Very unlikely

Severity of Failure

Level/score	Extent	Description
5	Catastrophic	Failure causes complete system loss and/or potential for fatal injury
4	Critical	Major damage to system and/or potential for serious injury
3	Serious	Significant damage to system and/or potential for injury
2	Marginal	Failure may occur with serious damage to system or personnel
1	Negligible	No potential for damage or injury

Detection of Likely Failure

Level/score	Extent	Description
1	Obvious	Readily detectable before failure
2	Readily detectable	Likely to be detected before failure
3	Detectable	Moderate chance of potential failure being detected
4	Difficult to detect	Rarely detected before failure
5	Impossible	So unlikely that
	to detect	occurrence may not be experienced


Example

Smart Airbrick (SAB)

British Patent GB2397592 26th January 2004

Eco Coverage Technologies

Smart Air Brick

8 Interfaces considered

3 Critical elemental functions

- Compatibility of materials, product/building
- Operation of ball valve system
- Structural response in situ

RPN Scores

Ball Valve Operation	27
Materials Compatibility	18
Structural Response	<u>18</u>
Total	63
Average	21

Additional Examples

Roof window that acts as a skylight (RPN = 32-48)

High friction road surfacing system (RPN = 8-48)

Conclusions & Recommendations

- 1. Encourage adoption of FMEA/FMECA methodologies when dealing with highly innovative and/or prototype construction building products.
- 2. Integrate FMEA/FMECA into product performance based assessments.
- 3. Present the information such that residual risk/benefit judgements can be made.
- 4. Consider ways of adapting FMEA/FMECA to make tailored to construction and building products.