Taking POC for SOC further

Contents

- Complex systems
- Solving analytically
- Solving numerically
- Catalytic cycles
- Rate-determining steps
- Changes in R.D.S.
- D.F.T. is support of mechanisms
- Correlation with kinetic data

Episulfonium-ion mediated ring closure

Episulfonium-ion mediated ring closure

Integrated rate expressions

$$
\begin{array}{ll}
\frac{d[A]}{d t}=-k^{1}[A]-k^{2}[A] & {[A]=[A]_{0} e^{-(k 1+k 2) t}} \\
\frac{d[B]}{d t}=k^{1}[A]-k^{3}[B] & {[B]=\frac{k_{1}[A]_{0}}{k_{3}-k_{1}-k_{2}}\left(e^{-(k 1+k 2) t}-e^{-k 3 t}\right)} \\
\frac{d[C]}{d t}=k^{2}[A]+k^{3}[B] & {[C]=[A]_{0}\left(1-e^{-(k 1+k 2) t}-\frac{k_{1}}{k_{3}-k_{1}-k_{2}}\left(e^{-(k 1+k 2) t}-e^{-k 3 t}\right)\right)}
\end{array}
$$

Using MS Excel to solve for the rate constants

Time	data A data B data C	calc A calc B calc C	error A error B error C
k1			
k2			
k3			
RMS error			

1) Tabulate experimental data
2) Calculate expected values of the time points, for estimated k^{1}, k^{2} and k^{3}, using the formulas previously worked out.
3) Calculate error (data - calc) for each point and square it.
4) Calculate average (error${ }^{2}$) and square root it. This is the RMS error.
5) Use the SOLVER function in Excel to minimise the RMS error by adjusting k^{1}, k^{2} and k^{3}.

Is it possible to do this without the integration?

YES! Euler's method for solving differential equations numerically.

1) We know the simple rate expressions.
2) Take a guess at the rate constant k
3) We know $[A]$ and we know $\frac{d[A]}{d t}$
4) Start at " t^{1}, A^{11} and move a small time step δt in direction of gradient
5) $\delta \mathrm{A}=\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}} \delta \mathbf{t}$
6) Calculate $t^{1}+\delta t=t^{2}$ and calculate $A^{1}+\delta A=A^{2}$.
7) Repeat again and again until $t=$ end of reaction
8) Compare the calculated values of A with the experimental values of A. Calculate RMS error.

9) Repeat with a new values of rate constant k until error is minimised.

Is it possible to do this without the integration?

Actually the 4th Order Runge Kutta method is better. And there is plug-in for Excel:
http://www.chem.mtu.edu/~tbco/cm416/RK4_v3_0.html or Google "excel rk4 plug in"

1) Download and install plug-in
2) Get your rate constants and starting concentrations into a .rk4 file (see guide): Sarah.rk4
3) Get your data into .dat file: Sarah8.dat
4) Open Excel and press the RK4 button. Blank.xls

Using RK4 numerical method

Catalysis kinetics

Catalytic cycles

$\frac{\mathrm{d}[\mathrm{prod}]}{\mathrm{dt}}=$ constant
rate determining step must not include free amine starting material

so A is resting state and

$$
\frac{\mathrm{d}[\text { prod }]}{\mathrm{dt}}=\mathrm{k}^{1}[\mathrm{Zr}]
$$

Zero order in SM

Catalysis kinetics

For a non-catalytic reaction: the reaction rate expression describes the difference in atomic make up between the starting materials and rate determining step

For a catalytic reaction: the reaction rate expression describes the difference in atomic make up between the catalyst resting state and rate determining step

Changes in Rate-determining step

Noyori, Wills and others

Reaction mechanism and kinetics

Reaction mechanism and kinetics

Coupled differential equations: $d[P] / d t$ and $d\left[R u H_{2}\right] / d t$ as functions of $[P],\left[R u H_{2}\right]$ and constants.

Solving coupled differential equations using MATLAB

Data from GC and NMR for various catalysts

Data from GC and NMR for various catalysts

Changes in RDS due to starting concentrations

Using modelling to help with TS structure

Kinetics can tell you the atoms in the transition state of the RDS. What about the structure?
Quantum chemical calculations can really help in modelling the structure of the transition state.
e.g.

Adv. Synth. Catal. 2007, 349, 2537 - 2548

What is in the T.S.?

1st order in
aldehyde

1st order in nitromethane

1st order in catalyst

Adv. Synth. Catal. 2007, 349, 2537 - 2548

Competing pathways

Starting material complex

Adv. Synth. Catal. 2007, 349, 2537 - 2548

Modelling the reaction path

Starting complex
G.S.

Reaction T.S.

Product complex G.S.

Modelling relative rates

Can we use modelling (DFT) to help understand why?

Getting started in DFT

Commerical software such as Gaussian and Jaguar are widely used (but expensive).
GAMESS and PCGAMESS / Firefly are free!
PCGAMESS is available for windows, mac and linux, and it fast.
Instructions are included and it is simple to set up and use.

Helpful points:
Start on simple systems.
Build up complex systems from the reaction site outwards (particularly for T.S. calcs).

Modelling relative rates

Modelling relative rates

relative to their own respective uncomplexed starting material

Pictures from MacMolPIt (also free)

Modelling relative rates

HOMO of TS
Vector arrow of TS vibration

Pictures from MacMoIPIt (also free)

