Key Elements in Organic Synthesis: Recent Advances in p-Block Chemistry

Recent Advances in Sulfur Chemistry

4th December 2009

Stephen Hilton

Talk Overview

1) Sulfur containing Natural Products

Epidithiodiketopiperazines (ETPs)

2) Sulfur-Carbon Bond Formation

Formation of aryl-S bonds Benzothiazoles/ Benzothiophenes Sulfur Electrophiles with Alkynes Sulfur Radical Chemistry

3) Sulfur Mediated C-C, Bond Formation

Pummerer and Pummerer-type reactions Ramberg Bäcklund reaction Sulfoxide directed *ortho*-lithiation

4) Chiral Sulfur Ligands and Catalysts

Ellman type sulfonylimines

5) Rearrangements

Sulfur Natural Products

- 2004. Kung et al. identified chetomin from a screen of ~600,000 compounds as the only compound that showed inhibition of HIF-1 α /p300 binding

- Viable drug target
- Chetomin effective in vitro and in vivo,
 - $-\downarrow$ HIF mediated gene expression
 - $-\downarrow$ tumor size in mouse xenograft models

Properties

Antitumor, antiviral and antibacterial activity.
Inhibitor of transcription factor NFκB,
Inhibitors of farnesyl transferase and HIF.
catalytic .

Recent mechanism of action studies of ETP core and Chetomin Schofield <2009JBC26831>

Kung <2000Nature Medicine 1335> ⁵ Kung <2004 Cancer Cell 33>

ETP Core Synthesis

Kishi<1981T2045>

6

R

ETP Core Synthesis

Hilton/Motherwell<2006TL2387>

8 Movassaghi <2009Science238>

ETP Synthesis

S

9

Sulfur-Carbon Bond Formation

Formation of Aryl-S bonds

Increasing interest in formation of aryl C-S bond due to increasing prevalence in areas of therapeutic interest, such as Cancer, HIV and Alzheimers disease

Previous work on metal catalysed aryl C-S bond formation has been limited due to the view that metal catalysts would be deactivated by thio-compounds.

C-H activation has more recently been investigated for the formation of C-S bonds

For recent papers, see the following:

Formation of Aryl-S bonds

Cross-Coupling of Thiols with Aryl halides under Ligand free Conditions

Cat loading 0.01-0.5%

12

Stambuli<2009JOC4005>

Formation of Aryl-S bonds

Newman-Kwart Rearrangement of O-Aryl Thiocarbamates

Kappe<2009EJOC1321> <2009OPRD321>.

NKR in flow and microwave chemistry

Proposed Pd-Sulfur complex

Entry	Ar	Time	Conv. (%)	Temp.
1	$p-NO_2C_6H_4$	2.5 h	>99	180 °C
2	p-MeOC ₆ H ₄	14 h	92	>295 °C

Yields 56-90%

Benzothiazoles via C-H activation

Catalysts: PdCl₂, PdCl₂(cod)₂, PdBr₂

14

Inamato & Doi<2008OL5147>

For the synthesis of indoles and 3,1-benzoxazines, dihydrobezofurans, see: <2007T8250>

Larock<2009JOC6802>

Reaction traditionally carried out with Bu₃SnH or derivatives Drawbacks: toxicity, purification, cost.

Thiol mediated cyclisations avoid these problems

For recent papers: <2008T9799> Review – Majumdar <2007OL1061> <2007TL9124> <2009TL228> <2007OL4375> - Renaud <2009OL2651> <2007TL5265> <2007TL7031> <2009OL3298> - Initiator Free <2008CSR1603> Review N-centred radicals, Xanthate - Zard

Thiol Mediated Radical Cyclisations

Thiophenol-mediated 1,5-hydrogen transfer for the synthesis of indolizidenes and related compounds

18

Thiol Mediated Radical Cyclisations

Amine-mediated single electron transfer

Minor

Entry	amine	Time	Temp.	Yield (%)
1	NEt ₃	8 h	90 °C	74
2	Pr ₃ N	3 h	140 °C	83
3	Pyridine	24 h	115 °C	No reaction
4	<i>i</i> PrNEt ₂	4.5 h	125 °C	69

Addition of 2 equiv. water increases yield

19

Thiol Radicals and Isocyanides

Barton-McCombie-type reaction

>95%

Minozzi<2004ACIE3598>

Thiol Radicals and Isocyanides

Can also be carried out on a solid support: <2004TL8541>

Kilburn<2008TL6364><2003TL1347>

Sulfur Mediated C-C bond Formation

Reviews: Feldman<2006T5003> see also Pellissier<2006T1619>

Feldman<2008JACS14964><2009JOC3449>

Proctor<2009OBC589>

The School of Pharmacy Pummerer and Pummerer-type Reactions University of London

Synthesis of Azospirocyclic cyclohexadienones

Reaction proceeds via the same Pummerer-type reaction of the hemithioacetal

The School of Pharmacy Pummerer and Pummerer-type Reactions University of London

Reaction proceeds *via* the same Pummerer-type reaction of the hemithioacetal. However, the outcome of the reaction depends heavily on the intermediate:

Used to synthesise a range of substituted α -aryl acetamides.

Proctor<2009CC3101>

University of London

The School of Pharmacy Pummerer and Pummerer-type reactions **Trifluoromethylation**

Dithianes as trifluoromethylketene equivalents: provides for a facile way to introduce the CF₃ group

Products are versatile and make use of the dithiane

Oshima<2009OL2185>

Utilising a domino HWE/conjugate addition/Ramberg-Bäcklund sequence

See also <2009JOC2271>

28 Taylor<2007T12123>

Ramberg-Bäcklund Reaction

Hodgson<2005SL1267>

Sulfoxide Directed ortho-Lithiation

Method for meta-substitution of arenes

Synthesis of substituted arenes and heterocycles using sulfoxides as directing groups for lithiation and also as removable auxiliaries

For directed *ortho*-metallation see also: <2004ACIE888>, <2007JOC3199>

Brown<2008OBC1215>

Sulfoxide Directed ortho-Lithiation

Method for meta-substitution of arenes

Chiral Sulfur Ligands and Catalysts

Chiral Sulfur Ligands and Catalysts

Reviews: Schulz<2007CR5133> see also Pellissier<2007T1297>, Sone<2008Current Organic Synthesis305> Aggarwal<2007CR5841>

Deng<2009JACS418>

See also Ellman<2009JACS8754> for similar additions to nitroalkenes and Seidel<2008JACS16464>

35 Dixon<2008OL1389>

$(F_{a,S}) = (F_{a,S}) = (F_{$					
$\begin{array}{c} \begin{array}{c} & \begin{array}{c} Pd(OAc)_{2} \ (5 \ mol\%) \\ Ligand \ (10 \ mol\%) \\ \end{array} \\ \hline BF_{3} \ OEt_{2} \ (4 \ equiv) \\ THF, \ rt/ \ 48 \ h \\ \end{array} \\ \begin{array}{c} \begin{array}{c} yields \ 30-80\% \\ ee's \ 38-73\% \end{array} \end{array}$				Me Me (R _a ,S) 1	N-5'
EntryLigandProductYield (%)ee (%)1 (R_a, S) 1 $R = Ph$ 6367 (S)2 (S_a, S) 1 $R = Ph$ 4862 (R)3 (R_a, S) 2 $R = Ph$ 4060 (S)4 (S_a, S) 2 $R = Ph$ 3057 (R)	O N Bn	O D BF <u>3.</u> T yi ee	$DAc)_2$ (5 mol% and (10 mol%) DEt_2 (4 equiv HF, rt/ 48 h fields 30-80% e's 38-73%		HO, Ar
1 (R_a, S) 1R = Ph6367 (S)2 (S_a, S) 1R = Ph4862 (R)3 (R_a, S) 2R = Ph4060 (S)4 (S_a, S) 2R = Ph3057 (R)	Entry	Ligand	Product	Yield (%)	ee (%)
2 (S_a, S) 1R = Ph4862 (R)3 (R_a, S) 2R = Ph4060 (S)4 (S_a, S) 2R = Ph3057 (R)	1	(R _a ,S) 1	R = Ph	63	67 (S)
3 (R_a, S) 2R = Ph4060 (S)4 (S_a, S) 2R = Ph3057 (R)	2	(S _a , S) 1	R = Ph	48	62 (<i>R</i>)
4 (S_a, S) 2 R = Ph 30 57 (<i>R</i>)	3	(R _a ,S) 2	R = Ph	40	60 (<i>S</i>)
	4	(S _a , S) 2	R = Ph	30	57 (<i>R</i>)

Ligands are related to those of Ellman<2003OL545>

Qin<2009JOC283>

Chiral Sulfur Ligands and Catalysts

Polyketide macrolides present a number of synthetic challenges including: stereocontrol, and macrocyclisation

6-Deoxyerythronolide B, R = R' = H Erythronolide B, R = OH, R' = H Erythronolide A, R = R' = OH

Chiral Sulfur Ligands and Catalysts

Yamaguchi macrolactonisation failed to produce the macrolide. Use of C-H oxidation leads to activation with the palladium catalyst facilitating selective ring formation

tert-butanesulfimines - chiral amnie equivalents -related to Davis' *para*-toluenesulfimines <2006JOC8993><1998CSR13>

For reviews of the Ellman reaction see: Ellman<2002ACR984>, Chemla<2009CSR1162>, Lin<2009ACR831>, Stockman<2006T8869>.

39

tert-butanesulfimines - chiral amnie equivalents -related to Davis' *para*-toluenesulfimines <2006JOC8993><1998CSR13>

For reviews of Ellman sulfonylimines see: Ellman<2002ACR984>, Chemla<2009CSR1162>, Lin<2009ACR831>, Stockman<2006T8869>.

41 Senanayake<2005ACA93>

Formation of aldimines and ketimines

Deprotection is straightforward under acidic conditions:

Recycling of tert-butanesulfinyl group: Ellman<2009JOC2646>, Aggarwal <2009TL3482>

42 Ellman<2001JACS10127>

aza-Morita-Baylis-Hillman reaction

Analogous use of lithium allenolates– synthesised *in-situ via* initial Brook rearrangement

See also Chemla <2009OL931> and Viso <2008OL4775> for related reactions

43 Scheidt<2008OL5227>

Davis<2006JOC6894>

Chemla<2004JOC8244>

For additional examples: Sweeney<2009EJOC4911>

Rearrangements

Reaction was carried out with 5 equivalents of base (LDA produced complex mixtures) 46

Rearrangements [2,3] Thia-Sommelet-Hauser

Wang<2008OL693>

The School of PharmacyRearrangementsUniversity of London[1,2] Stevens and sulfimide [2,3] rearrangements

Synthesis of Allenamides via sulfimide [2,3]-sigmatropic rearrangement

Tang and co-workers investigated a range of bisoxazoline ligands Yields 60-98% ee's 50-90%

48

Tang<2009ASC309>

Rearrangements [3,3] Sulfonium Ylide rearrangements

Products are readily converted to spirocyclopentanes

Rainier<2008ACIE5374>

Rearrangements of Alkynyl Sulfoxides Catalysed by Gold (I) Complexes

Reaction of sulfoxides with gold-carbenoid species:

For related reactions see also Zhang<2007ACIE5156> and reactions of allenes Krause<2006ACIE1897>

Toste<2007JACS4160>

Rearrangements of Alkynyl Sulfoxides Catalysed by Gold (I) Complexes

Reaction of sulfoxides with gold-carbenoid species:

Rearrangements of Alkynyl Sulfoxides Catalysed by Gold (I) Complexes

Reaction of allyl sulfides with gold-carbenoid species:

Rearrangements of Alkynyl Sulfoxides Catalysed by Gold (I) Complexes

Reaction of sulfoxides with gold-carbenoid species:

Davies<2009ACIE8372>

Thanks

Thanks to the organising Committee

Thank you for listening

Journal Abbreviations

- ACA Aldrichimica Acta
- ASC Advanced Synthesis and Catalysis
- ACIE Angewandte Chemie International Edition
- ACR Accounts of Chemical Research
- CC Chemical Communications
- CR Chemical Reviews
- CSR Chemical Society Reviews
- EJOC European Journal of Organic Chemistry
- JACS Journal of the American Chemical Society
- JBC Journal of Biological Chemistry
- JOC Journal of Organic Chemistry
- NC Nature Chemistry
- OBC Organic and Biomolecular Chemistry
- OL Organic Letters
- OPRD Organic Process Research and Development
- OS Organic Syntheses
- PNAS Proceedings of the Natural Academy of Sciences
- SL Synlett
- T Tetrahedron
- TL Tetrahedron Letters

Additional Slides

Stable sulfur electrophile instead of sulfenyl chloride

R ₁	R_2	Solvent	Temp.	Equiv.	Time	Yield (%)
Et	Et	Tol.	Rt	3.0	60 h	77
Et	Et	Tol.	Rt	8.0	48 h	77
Bn	Bn	Tol.	Rt	3.0	60 h	75

Olenyuk <2009TL4310>

Thiophenol catalysed Claisen rearrangement of coumarin derivatives

In absence of Thiophenol no rearrangement takes place

Similar reaction observed with indole annulated sulfur heterocycles <2007TL7031>

Majumdar<2007TL5265>

Ramberg-Bäcklund Reaction

Synthesis of stilbenoid anti-cancer agents combrestatin A-4 and DMU-212

Entry	Conditions	E:Z	Yield (%)	Conditions
1	CF ₂ Br ₂ , <i>t</i> BuOH, KOH-Al ₂ O ₃ , 0 °C to rt 12 h	90:10	81	Chan 1994CC1771
2	C ₂ F ₄ Br ₂ , <i>t</i> BuOH, KOH-Al ₂ O ₃ , reflux12 h	85:15	72	Franck 1999OL2149
3	CCl ₄ , <i>t</i> BuOH, KOH, H ₂ O	47:53	69	Meyers 1969JACS7510

59 Taylor<2007CC1617>

The School of Pharmacy Pummerer and Pummerer-type reactions University of London Fluorination

Oxidative desulfurisation procedure to produce geminal 1,1-difluoroalkanes

Haufe<2008SL106>

Similar work by Hara, results in polyfluorinated alkanes

Eschenmoser Coupling reaction

One-pot, two step procedure

61

<2009TL1838>

Ellman-type reaction

Optically pure Indolines from chiral tolyl-sulfinylalkylbenzenes

Tandem process proceeds at room temperature

The School of PharmacyRearrangementsUniversity of London[2,3] Mislow-Braverman-Evans Rearrangement

Classical [2,3] Mislow-Braverman-Evans rearrangements results in formation of analcohol with loss of sulfur

Detailed investigation into the effects of substituents on the pyran ring and how they affect the rearrangement outcome. 63

Pradilla<2008JOC8929>