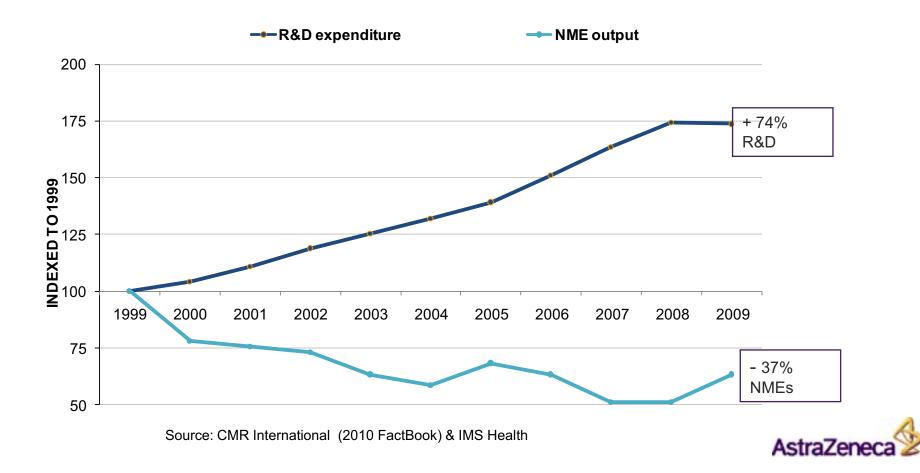
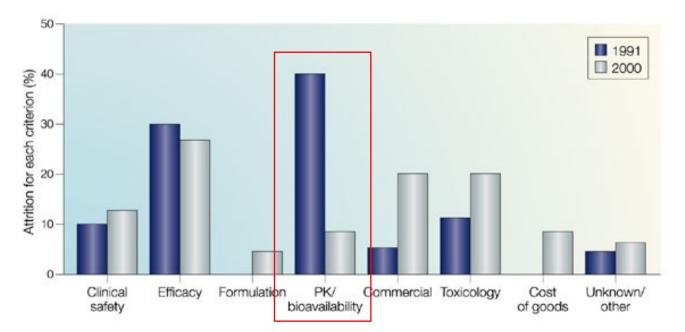
The Safety Related Attrition Challenge: A Medicinal Chemists Perspective


Steve Swallow

AstraZeneca R&D, Global Safety Assessment

Introduction

- Pharmaceutical industry facing ever increasing challenge
- Rising costs & static productivity


Reasons for Attrition

- Shift in attrition from DMPK to toxicology
- No evidence of significant change in 2010

Discovery Toxicology Investment Needed

Kola et al, Nature Reviews Drug Discovery 2004, 3, 711

- Reduction in DMPK related attrition achieved through:
- Investment in discovery DMPK
- Development of assays
- Sharing of data and analysis
- Communication integration into project teams

Close scientific collaboration between DMPK & medchem

What is the problem? Evidence, prevalence, occurrence axax

Disasa i

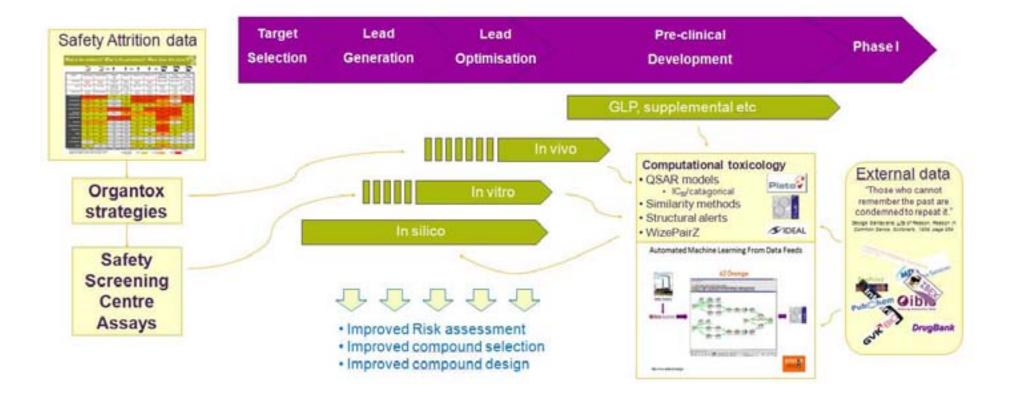
Non-clinical

	2	
Phase III/ Approval	Post- Approval	Post-Approval
DRs on label	Serious ADRs	Withdrawal from sale

Phase	Preclinical	Non-clinical	Phase I	Phase I-III	Phase I-III	Phase III/ Approval	Post- Approval	Post-Approva
Information:	Causes of attrition	Causes of attrition	Serious ADRs	Causes of attrition	Causes of attrition	ADRs on label	Serious ADRs	Withdrawal from sale
Source:	ABPI (2008)	Car (2006)	Sibille et al. (1998)	ABPI (2008)	Olson et al. (2000)	BioPrint® (2006)	Budnitz et al. (2006)	Stevens & Bake (2008)
Sample size:	156 CDs stopped	88 CDs stopped	1,015 subjects	63 CDs stopped	82 CDs stopped	1,138 drugs	21,298 patients	47 drugs
Cardiovascular:	24%	27%	9%	35%	21%	36%	15%	45%
Hepatotoxicity:	15%	8%	7%	29%	21%	13%	0%	32%
Haematology/BM:	3%	T%	2%	3%	4%	16%	10%	9%
Nervous system:	12%	14%	28%	2%	21%	67%	39%	2%
Immunotox; photosensitivity:	7%	7%	16%	10%	11%	25%	34%	2%
Gastrointestinal:	5%	3%	23%	2%	5%.	67%	14%	2%
Reprotox:	9%	13%	0%	5%	1%	10%	0%	2%
Musculoskeletal:	8%	4%	0%	5%	1%	28%	3%	2%
Respiratory:	1%	2%	0%	2%	0%	32%	8%	2%
Renal:	6%	2%	0%	5%	9%	19%	2%	0%
Genetic tox:	5%	5%	0%	0%	0%	0%	0%	0%
Carcinogenicity:	0%	3%	0%	3%	0%	1%	0%	0%
Other:	4%	0%	0%	2%	4%	16%	2%	2%

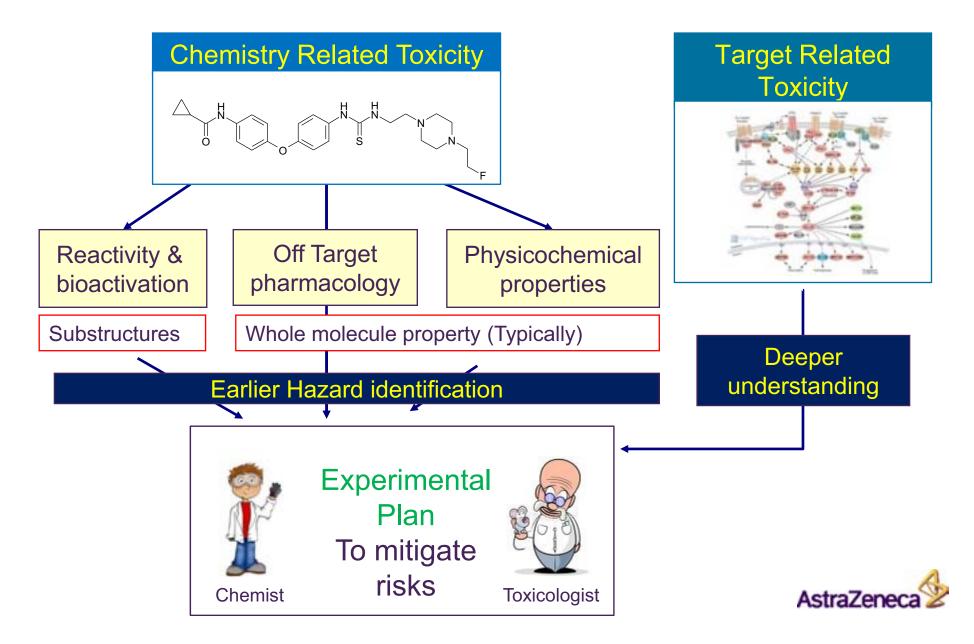
Dhase Lill

.

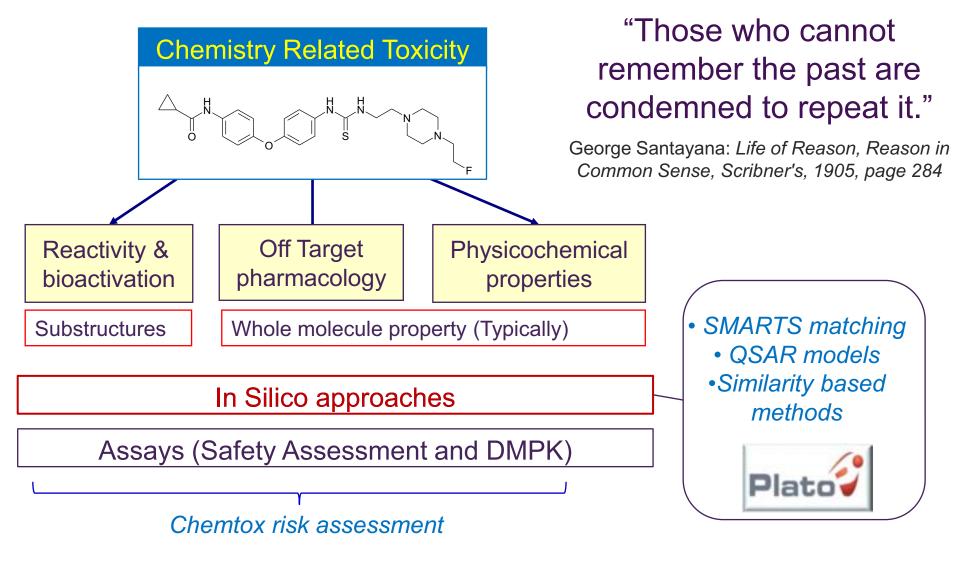

Disasa Lill

Adapted from Redfern WS et al. The Toxicologist 2010; 114 (S-1), 1081.

Dhasa

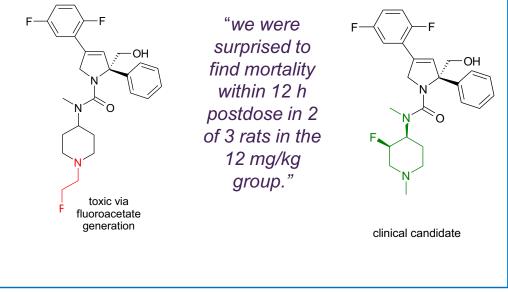

Draelinical

AstraZeneca Safety Data Strategy



A chemists view of toxicology

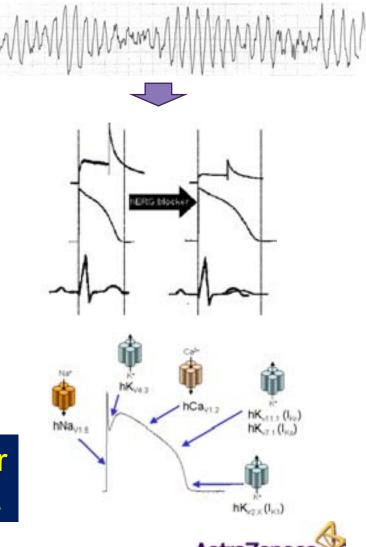
Earlier identification of chemical hazards

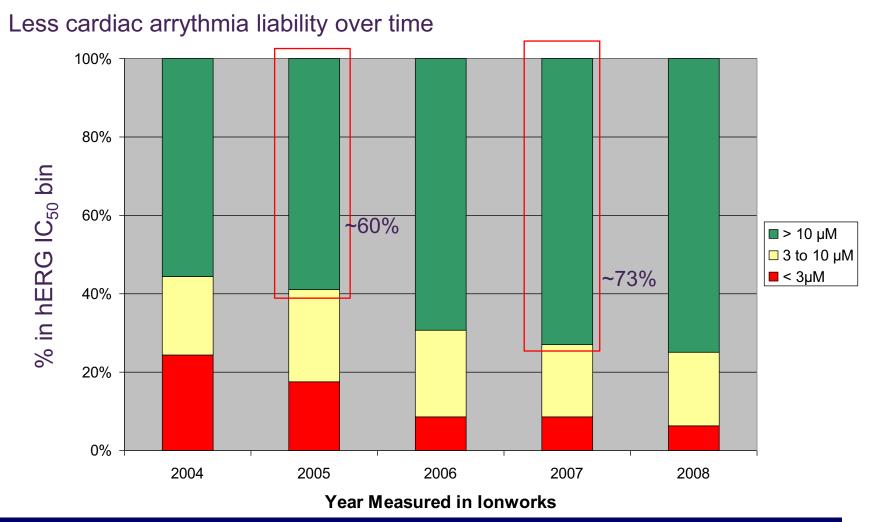


Structural Alerts

- Multitude of sub-structural alerts to be aware of
 - Reactive metabolites
 - Genotoxicity
 - Reactive structures
 - Toxic metabolites

- Still appearing to cause problems for medicinal chemists
 - Example: J. Med. Chem. 2008, 51, 4239–4252

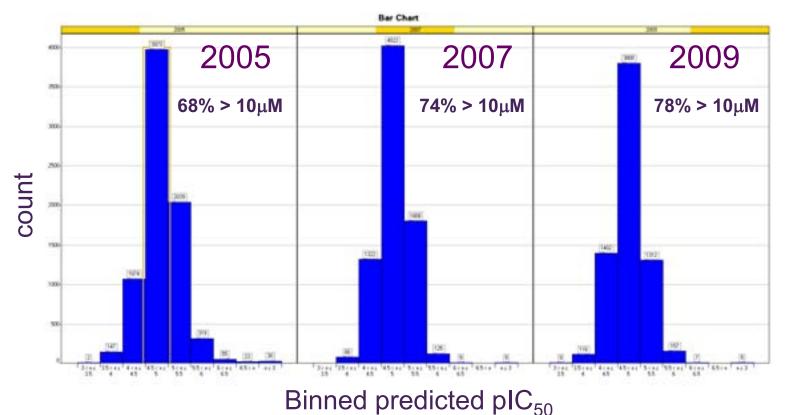



hERG: example of a mature target?

- Withdrawals in late 1990s for risk of Torsades de Pointes
 - E.g Terfenadine & Cisapride
- Identification of hERG as a leading cause of QTc prolongation
- ICH E14 guidelines in 2005 introduced need for "thorough QT/QTc study"
- Significant investment in preclinical risk assessment and mitigation strategies

Routine assessment of hERG & other ion channels in AZ and other pharma

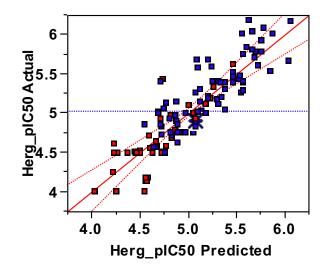
hERG: example of a mature target?



Strategies to avoid well understood, many projects can avoid through early focus – evidence of improved compound design?

Are we improving design against hERG?

- Global QSAR Model:
 - Comparison of hERG predictions for 1st 10k compounds by year


~30% fewer compounds with predicted hERG activity < 10μ M since 2005

Working with hERG in Projects

- Project hERG Model
 - Sub-structure corrections
 - Interpretable with respect to SAR
 - Lipophilicity Model for ClogD
- Better performance than global Models for some projects

Molecular Matched Pairs

$$R - X \xrightarrow{\bigtriangleup} P \qquad R - Y$$

Probability for given transformation X to Y +ive -ive neutral

> But context may be important $R^1 - X$ $R^2 - X$ $R^n - X$

WizePairZ: A Novel Algorithm to Identify, Encode, and Exploit Matched Molecular Pairs with Unspecified Cores in Medicinal Chemistry Daniel J. Warner, Edward J. Griffen and Stephen A. St-Gallay Journal of Chemical Information and Modeling 2010 50 (8), 1350-1357

Matched Molecular Pairs & hERG

GSK and Univ. Sheffield 100% 5326 4243 2849 2484 441 1120 1106 1094 >>0CH3 H>>CI F>>OCH3 CH3>>CI H>>CH3 *÷ F>>C H>>CF3 CH3>>F H>>Et H9<<H HO~~H KO% CH3>>OCH3 CI>>OCH3 CH3>>CF3 80% 70% 60% 50% 40% 30% 20% 10%

J. Chem. Inf. Model. **2010**, 50, 1872

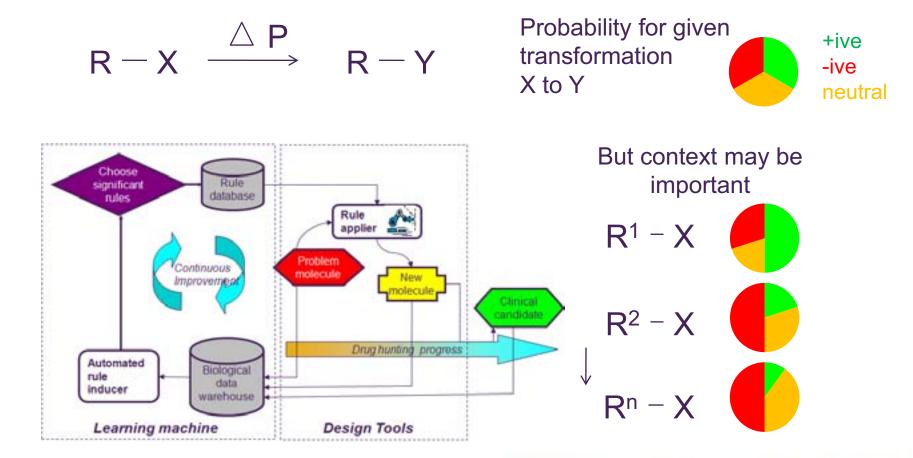
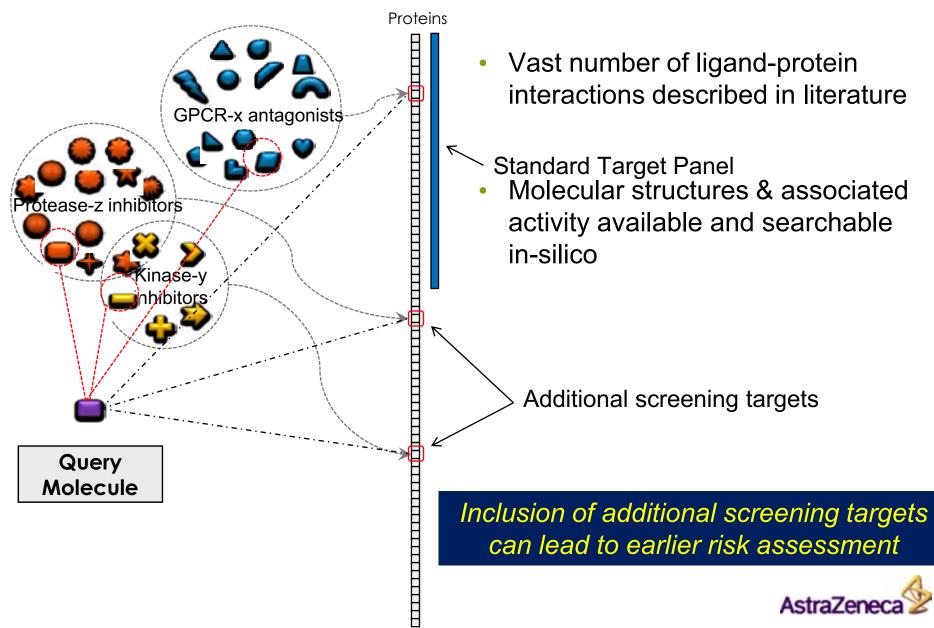
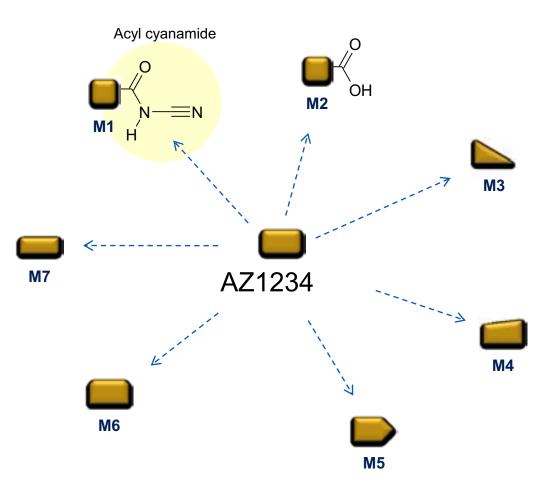



Figure 3. Global and local ΔP distributions for the H \rightarrow OCH₃ transformation in the hERG data set. Colors as in Figure 2. Different trends are observed, depending on whether the reduced graph node of the attachment point is an aliphatic linker [Zn], a hydrophobic aromatic ring [Sc], or a polar aromatic ring [V]. *P* values signify the statistical significance of this observation. The number of examples for each case is shown above the respective pie chart.

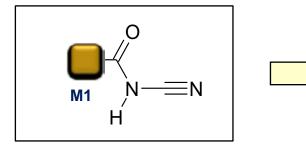
Molecular Matched Pairs



Ref: Griffen, E. Future Medicinal Chemistry 1:405-408 (2009)


WizePairZ: A Novel Algorithm to Identify, Encode, and Exploit Matched Molecular Pairs with Unspecified Cores in Medicinal Chemistry Daniel J. Warner, Edward J. Griffen and Stephen A. St-Gallay Journal of Chemical Information and Modeling 2010 50 (8), 1350-1357

Predictive Secondary Pharmacology



- AZ compound shown to cause cataracts in rats
- Circulating metabolites observed
- Q. Could there be an association between metabolites and cataract formation?
- Acylcyanamide substructure looks potentially reactive
 - Speculated protease inhibition?

PSP search

Conducted on acyl cyanamide substructure

Where R is any carbon containing group

Results (Selected examples)

WO 03/086325 A2

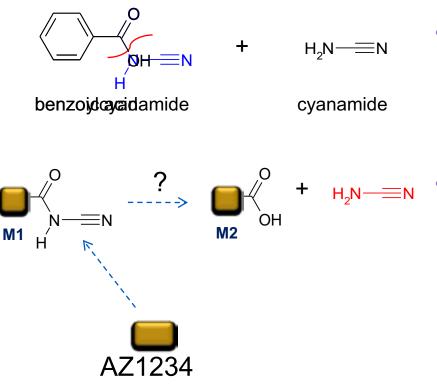
Cyanamides useful as reversible inhibitors of cysteine proteases Cyanamide derivative as Cathepsin K, Cathepsin S, Cathepsin F, Cathepsin L and Cathepsin B inhibitor: Useful in the treatment of rheumatoid arthritis, multiple sclerosis, autoimmune diseases, osteoporosis, asthma, Alzheimer's disease, atherosclerosis and endometriosis

US 6878706 B1

Cyanamides useful as reversible inhibitors of cysteine proteases

<u>US 20080267917 A1</u>

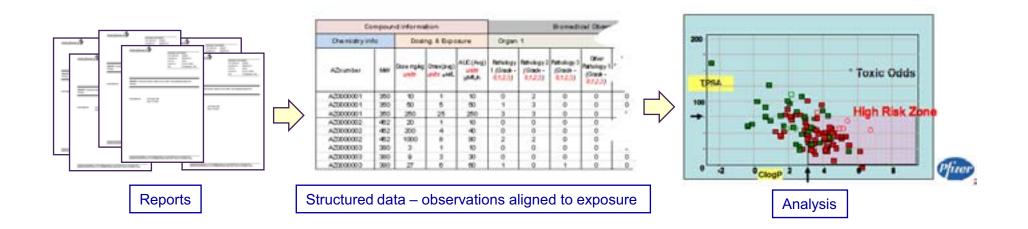
N-functionalized amides as hepatitis c serine protease inhibitors


Conclusions

- Potential as cysteine and serine protease inhibitors highlighted
- All peptidomimetic inhibitors
- Structural & biological relevance uncertain

Results (cont'd)

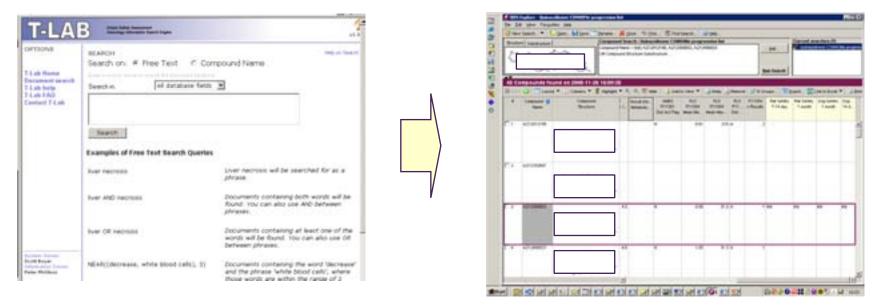
J. Med. Chem. , 1986, 29 (10) 1922-1929 Acyl, n-protected alpha-aminoacyl, and peptidyl derivatives as prodrug forms of the alcohol deterrent agent cyanamide



- Benzoylcyanamide highlighted as closest analogue
- Benzoylcyanamide is a prodrug of cyanamide
- Cyanamide inhibits aldehyde
 dehydrogenase (ALDH) in-vivo in rats
 - Prodrug provides sustained activity compared with cyanamide (reduced acute effect)
 - Cyanamide inhibition of ALDH implicated in formation of cataracts in rats lenses in-vitro
 - Journal of toxicology and environmental health. Part A (2009), 72(9), 577-84
 - Formation of cyanamide consistent with AZ1234 metabolism

Availability of suitable data sets

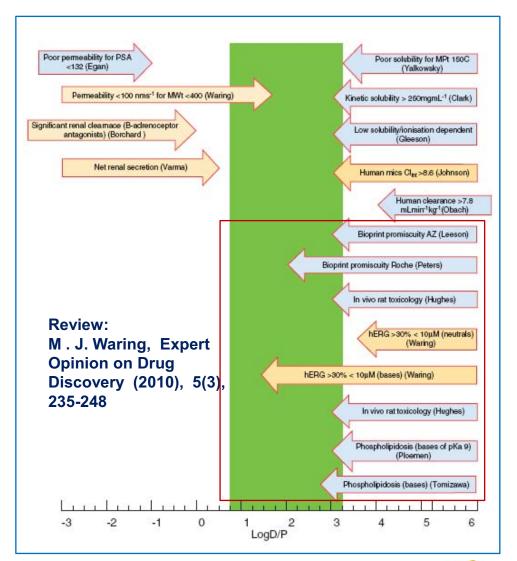
- Limited in-vitro data sets of suitable size
- In-vivo safety data not organized for structure activity relationship determination



Data repurposing a significant but necessary challenge Increasing desire for precompetitive data sharing

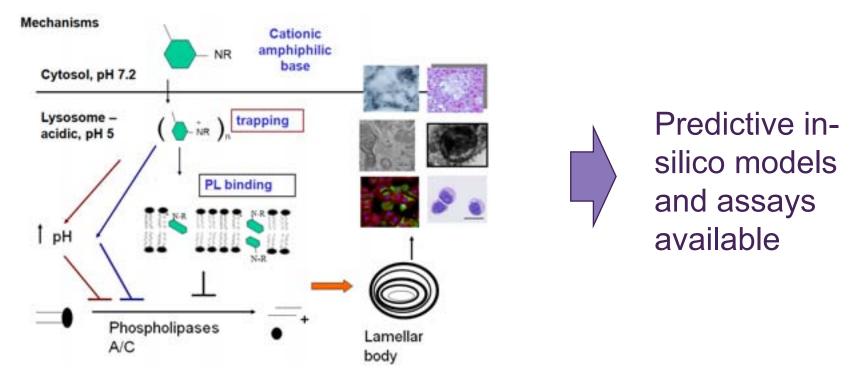
Availability of suitable data sets

Biowisdom Collaboration



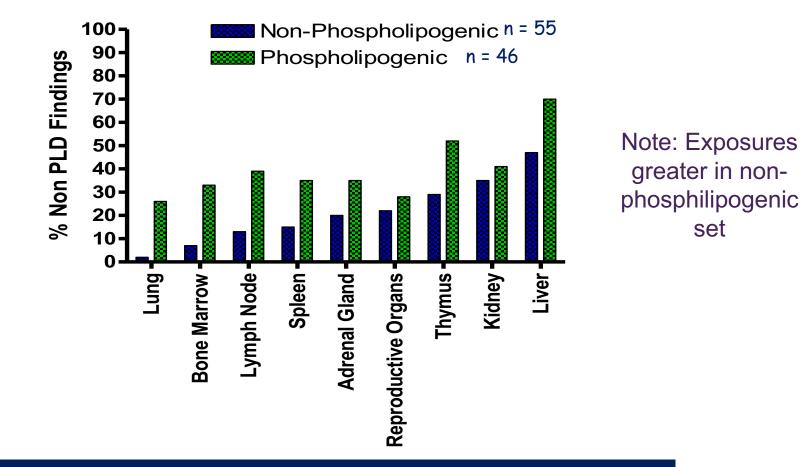
- Metadata from text mining available alongside biological & chemistry data
- Some challenging questions now readily searchable...
 - Example. Find compounds that have activity X that have a 1 month rat study

Physicochemical Properties and toxicity


- High lipophilicity associated with higher probability of poor outcomes against various relevant endpoints
- Pfizer 'rule of 3/75' based on in-vivo outcomes *Bioorg. Medchem. Lett.* 2008, 18, 4872
- Recent focus on minimizing lipophilicity contribution to potency in LG and LO

Phospholipidosis

- Generally considered an adaptive response
 - Some compounds display adverse effects pre-clinically & in humans

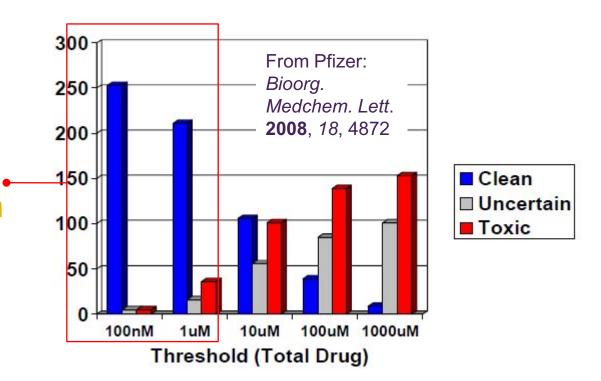


Are phospholipogenic compounds associated with more toxicities than non-phospholipogenic compounds?

Phospholipidosis

Study Report text mining

Phospholipogenic compounds show more non-PLD related findings in all organs despite lower exposure



Importance of Dose and Exposure

'All things are poison, and nothing is without poison; only the dose permits something not to be poisonous' - Paracelsus – 1493-1541

- Exquisite potency and PK to work in this area
- Greater exploitation of biochemical efficiency?
 - Kinetics and PD

The importance of binding kinetics
and residence timeTable 2. Drugs with slow or irreversible dissociation rates.Table 2. Drugs with slow or irreversible dissociation rates.DrugTargetDrugTargetDissociation (Dissociation (Di

- A review of biochemical mechanisms of FDA approved NMEs 2001-2004 highlights
 - 80% utilize secondary mechanisms in addition to initial mass action binding
 - Slow dissociation & irreversible 25%
 - For reviews see
 - *Curr. Opin. Drug Disc. & Dev.* **2009**, *12*, 31
 - Curr. Opin. Drug Disc. & Dev. 2009, 12, 488

Drug	Target	Dissociation (t _{v2})		
Candesartan	Angiotensin II receptor 1	11.5 h		
Tiotropium	Muscarinic m3 receptor	34.7 h		
Desloratadine	Histamine H1 receptor	>6 h		
Maraviroc	CCR5	10.5 h		
Lapatinib	EGF receptor	300 min		
Buprenorphine	μ-opioid receptor	166 min		
Olmesartan	Angiotensin II receptor 1	72 min		
Amlodipine	L-type calcium channel	77 min		
Aprepitant	Neurokinin 1 receptor	154 min		
Oseltamivir	Viral neuraminidase	33-60 min		
Darunavir	HIV-1 protease	> 240 h		
Aspirin	Cyclooxygenase	Irreversible		
Omeprazole	H*K* ATPase	Irreversible		
Lansoprazole	H*K* ATPase	Irreversible		
Clavulanate	β-lactamase	Irreversible		
Sulbactam	β-lactamase	Irreversible		
Tazobactam	β-lactamase	Irreversible		
Selegiline	Monoamine oxidase	Irreversible		
Tranylcypromine	Monoamine oxidase	Irreversible		
Celecoxib	Cyclooxygenase 2	Irreversible		
Finasteride	Steroid 5α-reductase	Mechanism-based		
Formestane	Aromatase	Mechanism-based		
Procarbazine	Guanine alkyltransferase	Irreversible		
Orlistat	Pancreatic lipase	Irreversible		
Vigabatrin	GABA transaminase	Irreversible		

Data from Tummino and Copeland 2008 Table 2 [5] , Swinney 2008 Table II [7] and Swinney 2004 Table 1 [8].

Potential to minimize exposure through extended PD

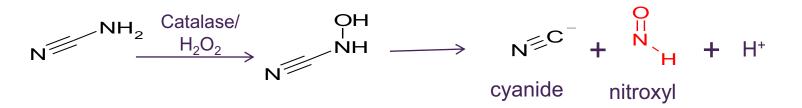
Summary

- Significant investment in Discovery Toxicology needed to improve safety related attrition rate
- Repurposing of data a significant but necessary challenge
- Precompetitive sharing of data sets should offer significant value in some areas
- In silico approaches are showing value in improving compound design & safety hazard identification
- Physicochemical property control important mechanistic understanding is limited
- Earlier understanding of biochemical mechanisms and kinetics may offer pharmacodynamic opportunities

Acknowledgements

- PLATO & PSP
 - Scott Boyer
 - Tobias Noeske
 - Ola Engvist
 - Mike Rolf
 - Catrin Hasselgren
- PLD
 - Paul Ciaccio
 - Jim Damewood
 - Linda Barone
 - James Fikes

- WizePairZ & Application
 - Dan Warner
 - Ed Griffen
 - Stephen St Gallay
- Data Repurposing
 - Biowisdom
 - Sherri Mattis
 - Dave Cook
- IDEAL
 - Andrew Poirrette
 - John Cumming


Extras

Mechanism of cyanamide inhibition?

Chem. Res. Toxicol. 2005, 18, 790

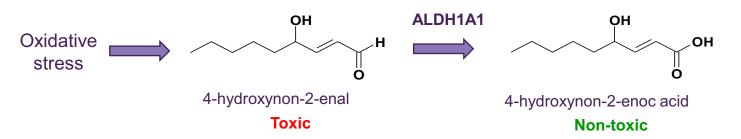
Nitroxyl generated from cyanamide

Molecular and cellular proteomics, 2009, 85, 887

Nitroxyl implicated in protein modification via cysteine

Disulfide or sulfinamide formation

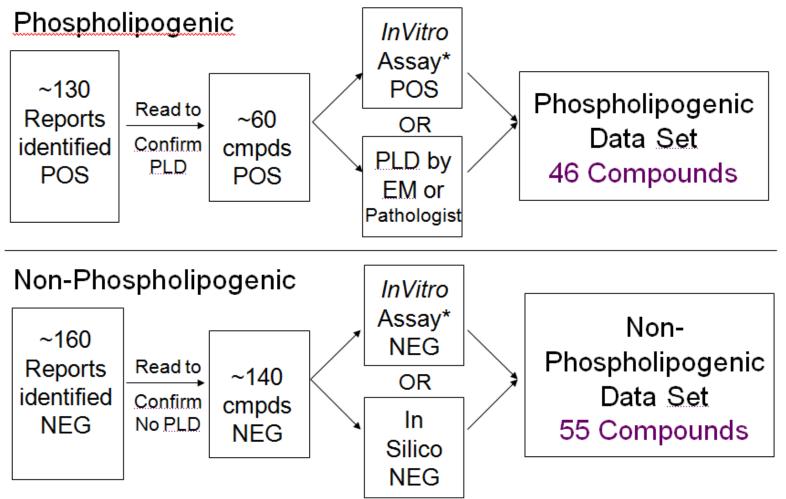
 $R^{SH} \xrightarrow{HNO} R^{S} R^{S} R^{O} R^{S} NH_2$


Response likely dependent on cellular location scavenging mechanisms etc

Credible hypothesis generated, new structural alert?

 Cyanamide inhibition of ALDH has been implicated in cataract formation in rats in-vitro

Journal of toxicology and environmental health. Part A (2009), 72(9), 577-84


- Toxic lipid derived aldehydes formed by oxidative stress
- 4-hydroxynon-2-enal (HNE) formation leads to lens damage
- Detoxified by ALDH1A1
- Inhibition of ALDH1A1 leads to increased toxicity

Credible hypothesis generated, new structural alert?

Phospholipidosis

Study Report text mining

