

Road Surface Treatments Association

Geosynthetics and Steel Meshes

Draft Code of Practice

David Shercliff – Committee Member

TenCate Polyfelt

Context

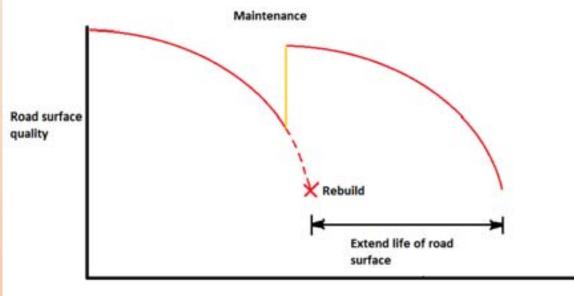
- Maintenance backlog
- Further budget reduction and increasing input costs
- Challenge from Government account for billed cost and depreciated billed cost – asset value management – whole life costs - roads should last longer
- Extreme winter conditions causing serious damage
- Increasing traffic levels
- Diminishing technical expertise
- We need well maintained roads to protect public safety and help the economy to grow
- The industry has a big part to play in helping to overcome these difficulties

Why do we need Code of Practice?

- To enable all industry stakeholders to recognise what best practice looks like
- To raise the profile of our industry demonstrating our commitment to quality and having a well trained and qualified workforce
- To provide a hub of information providing essential industry guidance on the use of interlayers covering; product selection, design and installation
- To provide essential advice on how to plan, procure and execute each job to manage risk
- Build client confidence in end product performance and durability and help overcome negative sentiment where it exists
- It will principally advise client bodies and contractors on the key measures that should be taken to ensure work is undertaken successfully

Benefits of Interlayers

- Maintenance cost reduction. Extending road surface life up to 4 times over conventional surfacing
- Reduction in asphalt thickness, in some circumstances, saving on raw material cost
- Prevents surface water ingress avoiding freeze/thaw effects
- Environmental impact associated with longer maintenance intervals.
- Reduced hidden costs to businesses and the general public through delays caused by road closure and traffic restrictions



www.rsta-uk.org

Comparative Costs and Life

Туре	Main Application	£ / m²	Expected Life years	Average Cost life index £/m2 per yr
50mm Asphalt overlay	Rural, Urban roads	8-10	5	1.8
50mm Asphalt overlay plus appropriate interlayer	Rural, Urban roads	15	15	1.0

Also consider

- Traffic control costs
- Disruption costs
- Planning costs
- Mobilisation costs

Time

Empirical evidence of success

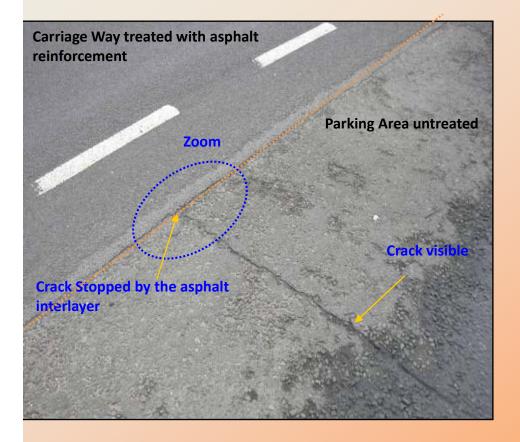


Photo taken in 2008, 5 years after installation

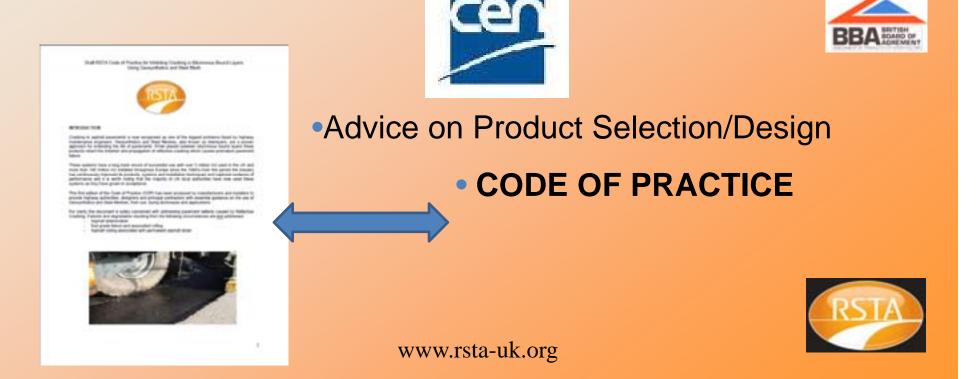
Zoomed area showing prevention of cracking

History

- 25 years of product development by individual manufacturers
 - Over 150 years worth of combined experience within RSTA members
- Manufacturers individually invested a great deal in developing own brands – protecting their research and development costs – now common themes emerging in design methods – need to address external barriers to the use of interlayers
- Pavement cracking recognised as a major issue
- Most Local authorities tried the using interlayers with very mixed success – some rejecting – uncoordinated review of problem
 - Poor installation and supervision
 - Poor assessment of existing site conditions wrong solution
- Europe moving ahead with many lessons learned
 - 100M sqm in Europe and 5M sqm used in UK
 - Used on highways schemes in Europe
 - Standards, codes of practice and test methods being developed

Forming of the committee Aims & Objectives

- Whole of UK industry represented suppliers and installers
- To gather best practice in UK & Europe
- To give a coherent consistent and united guidance
- To address problems found and correct misinformation
- Produce DRAFT document early (over 9 month period)
- Hear the comments of the client at an early stage Launch of draft today and submission to ADEPT and HA
- Aims to provide guidance on products available and identify key aspects affecting their use and provides evidence of performance



Aims

 Installation - Commitment to having a well trained and qualified workforce towards Sector 13

Product quality - Provide advice on products/Materials

UK suppliers and installers represented on committee

1 ACKNOWLEDGEMENTS

This document has been produced by the RSTA Sub-Committee for Geosynthetics & Steel Meshes.

Howard J. Cooke - Asphalt Reinforcement Services Ltd – Sub-Committee Chairman Supplier/Installer Richard Bennett - Maccaferri I td Manufacturer Richard Carr - ABG I td Supplier/Installer Ian Fraser - Tensar International Ltd Manufacturer Tom Foster - Foster Contracting Ltd Installer John Greenhalgh - Bekaert Ltd Supplier/Installer Howard Robinson - Road Surface Treatments Association David Shercliff - Tencate Geosynthetics (UK) Ltd Manufacturer Graham Thomson - Huesker Ltd Manufacturer

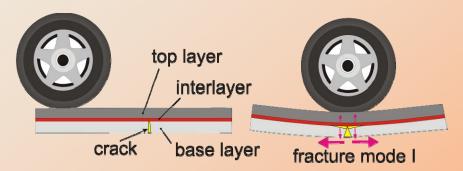
Table of available interlayers

Supplier	Product	Form	Material		Costing		Sectors	Roll size:	Grid operture size	150 9001	150 14001	CE
			Grid	Textle	Grid	Textie		(m)	(mm)			
	a college and the s					10 A		1.00 - 100				
ABG	Rotalfies \$30 (Cidex)	Composite	Glass Fibre	PET Non woven	Polymer	None	1	2.05×100	23 x 30			
	Rotaflex 838 (Cidex)	Composite	Glass Fibre	PET Non woven.	Polymer	None	1	2.05 ± 80	33 x 33			- ×
	Rotaflex 840	Composite	Glass Fibre	PET Non woven	Polymer	None	1	2.05 + 50	90 × 18			
	Rotaflex 8305L (Cidex)	Composite	Glass Fibre	PET Non woven	Polymer	None	1	2.05 x 75	55 x 30			
	Rotaflex 8385L(Cidex)	Composite	Glass Fibre	PET Non woven	Polymer	None		2.05 + 70	33×33		I I	1.1
RS .	GlacGrid 8550	Grid	Glass Fibre		Polymer		Self Adhesive	1.5 × 150	25×25			
	GlasGrid 8501	Grid	Glass Fibre		Polymer		Self Adhesive	15×100.	12.5 X 12.5			
	GlasGrid 8511	Grid	Glass Fibre		Polymer		Self Adhesive	1.5 × 100	25 x 25			
	GlasGrid 8502	Grid	Glass Fibre		Polymer		Self Adhesive	15×60	12.5 X 12.5			
	GlasGrid 8512	Grid	Glass Fibre		Polymer		Self Adhesive	15×60	25 x 25			
	GlasGrid CG50	Composite	Glazs Fibre	PP Non woven	Polymer	None	Self Adhesive	15×95	25 x 25			
	GlasGrid CG100	Composite	Glass fibre	PP Non woven	Polymer	None	Self Adhesive	1.5×60	25 x 25			
	GlasGrid CG200	Composite	Glass Fibre	PP Non woven	Polymer	None	SelfAthesive	1.5 × 60	25 x 25			- 22
	GlasGrid TF 8501	Grid	Glass Fibre	TP Intell Workers	Polymer	Teacher I	Self Adhesive	1.5×100	12.5 X 12.5			- C
	GlasGrid TF 8511	Grid	Glass Fibre		Polymer		Self Adhesive	1.5 × 100	25 + 25			- C
	GlasPave 25	Composite	Glass Fibre	PET Non woven	Polymer	None	Sea Concerve	153200		:	I	
									1/8			
	GlasPaye 50 Gridtleal	Composite Grid	Glass Fibre Glass Fibre	PET Non woven	Polymer Polymer	None		15×100	1/8 25 × 25	:		1
1.50				PP Non woven	1.000				40 × 40		12	1.12
wesker	HaTeld C 40/17	Composite	PET		Situmen	Bitumen	1	5×150*			- X -	
	HaTelit XP 50	Composite	PVA	PP Non-woven	Bitumen	Bitumen		5×150*	40 x 40		- ×	
Maccalerri	MicGrid Al5.7	Grid	GlassFibre		Polymer			2.2×100*	25 x 25			- C X
	MacGrid ARSA.7	Grid	GlassFibre		Polymer		Self Adhesive	2.2 x 100*	25 x 25			
	MacGrid ARSG 7	Composite	GlassFibre	Non woven	Polymer	Polymer	1	2.2 × 100*	25 x 25			
	MacGrid AR10.7	Grid	GlassFibre		Polymer			2.2×100^{4}	25 x 25			- C.M.
	MacGrid AR10A.7	Grid	GlassFibre		Polymer		Self Adhesive	2.2 × 100*	25 x 25			
	MacGrid AR10G.7	Composite	Glassfibre	Non woven	Polymer	Polymer	1	2.2 × 100*	25 x 25	1.00		- C M
	MacGrid AR12.7	Grid	GlassFibre		Polymer		1	2.2×100*	25+25			
	MacGrid AR12A.7	Grid	GlassFibre		Polymer		Self Adhesive	2.2 x 100*	25×25			
	MacGrid AR12G.7	Composite	GlassFibre	Non woven	Polymer	Polymer		2.2 x 100*	25 x 25			
	MacGrid AR20.7	Grid	GlassFibre		Polymer		1	2.2 × 100*	25 + 25			
	MacGrid All20A.7	Grid	GlassFibre		Polymer		SelfAdheilve	2.2 × 100*	25 x 25			1.2
	MacGrid AR20G.7	Composite	GlassFibre	Non woven	Polymer	Polymer	and concerns.	2.2 × 100*	25 + 25			12
	MicGrid Al6.2	Grid	PET	And a second second	Polymer	1 advise	1	2.2 + 100*	30 x 30			
	MacGrid ARSG 2	Composite	PET	Non woven	Polymer	Polymer	1	2.2 × 100*	Various			1.1
	MacGrief AR10G.2	Composite	PET	Non woven	Polymer	Polymer	1	2.2 × 100*	Various			12
	Roadmesh L	Grid	Steel	Start Rotter	- and the second	1. deliverate	1	2/3/4+25/50	8×10			10
	Roadmesh LB2	Grid	Steel				1	2/3/4 + 25/50	8×10			1.2
	Roadmesh LB	Grid	Sheel				1		8 × 10			12
	Roadmesh S	Grid	Steel					2/3/4 × 25/50 2/3/4 × 25/50	8×10			12
	PGM ID			PP Non woven				1.9 + 150 *				
enCabe		Textile	A			None			n/a		I	
	PGM-G50 (D	Composite	Glass Fibre	PP Non woven	Polymer	None		1.9 + 200 *	40 x 40		I	1.1
	PGM-G100 ID	Composite	Glass Fibre	PP Non woven	Polymer	None		1.9×100*	40 x 40		I	
	PGM-G200 (D	Composite	Glass Fibre	PP Non woven	Polymer	None		1.9 × 75*	43 x 40			- 28
ensar	ARL	Grid	**	16332	None			3.8 + 50	65 × 65	200	- 24	2.8
	AR-G	Composite	89	PP Non woven	None	None		3.8 + 50	65 x 65		- × -	
	Glacotex PSO	Composite	Glass Fibre	PP Non woven	Polymer	None		2.0 x 100*	40 x 40		× 1	
	Glassitex P300	Composite	Glass Fibre	PP Non woven	Polymer	None		2.0 x 200 *	40 x 40			1.0
	Giastres P200	Composite	Glass Fibre	PP Non woven	Polymer	None	1	2.0 × 100 *	40 x 40			

What is in the draft code?

Draft RSTA Code of Practice for Inhibiting Cracking in Bituminous Bound Layers Using Geosynthetics and Steel Mesh

NTE	ENTS	PAGE	
1	Acknowledgements	3	
	Overview	4	
_	Site Conditions and assessment	6	
2	a. Existing site condition and history	7	
	 b. Determine required performance and limitations 	8	
4	Geosynthetic Materials	8	
-	a. Types	8	
	b. Quality assurance	9	
	c. COSHH	9	
5	Determining the Solution	9	
	a. Design considerations and failure modes	9	
	b. Design procedures and input parameters	12	
	c. System and material selection	13	
	 Specifying the Geosynthetic or Steel Mesh 	14	
	e. Paving Fabrics as SAMI Layers	15	
6		16	
1	 Selection of appropriate installation contractor 	16	
	 Planning the execution of the work 	17	
	c. Site preparation	17	
	 Bond coat and application 	17	
	e. Geosynthetic installation	18	
	 Steel mesh installation 	18	
	g. Overlay application	19	
	h. Training	19	
	i. Traffic management	20	
	j. Health and Safety	20	
7	Evidence of performance	21	
	a. Technical Reports/Client testimonial	21	
	b. Case Studies	21	
8	Conclusions and Recommendations	35	
	Appendices	20	
	Appendix A - Glossary of terms	36	
	Appendix B – Bibliography	38	
	Appendix C - Installation pictures	45	
	Appendix D - Available design methods	47	
	Appendix E - Adhesion test procedure	00	



Types of failure considered

- Reflective cracking
- Fatigue cracking
- Differential settlement (often prevalent in road widening schemes)
- Thermal cracking

Functions

- Reinforcement at low strain the ability of the material to bind the asphaltic layer together to prevent crack propagation in either direction, spanning the potential crack
- Stress absorption the ability of the material to act as a composite with the asphalt to absorb transient stress in all directions
- Prevention of water penetration into lower layers and the avoidance of associated problems due to freeze/thaw effects and the need for lower drainage to remove subsurface water

Section 3 – Site Conditions & Assessment

NTE	INTS	PAG
1	Acknowledgements	3
	Overview	4
_	Site Conditions and assessment	6
~	a. Existing site condition and history	7
	 b. Determine required performance and limitations 	8
4	Geosynthetic Materials	8
	a. Types	8
	b. Quality assurance	9
	c COSHH	9
5	Determining the Solution	9
-	a. Design considerations and failure modes	9
	b. Design procedures and input parameters	12
	c. System and material selection	13
	d. Specifying the Geosynthetic or Steel Mesh	14
	e. Paving Fabrics as SAMI Layers	15
6	Installation	16
1.20	 Selection of appropriate installation contractor 	16
	 Planning the execution of the work 	17
	c. Site preparation	17
	d. Bond coat and application	17
	e. Geosynthetic installation	18
	f. Steel mesh installation	18
	g. Overlay application	19
	h. Training	19
	i. Traffic management	20
	j. Health and Safety	20
7	Evidence of performance	21
	 Technical Reports/Client testimonial 	21
	b. Case Studies	21
8	Conclusions and Recommendations	35
	Appendices	20220
	Appendix A - Glossary of terms	36
	Appendix B – Bibliography	38
	Appendix C - Installation pictures	45
	Appendix D - Available design methods	47
	Appendix E - Adhesion test procedure	50

3 Assessment

- Record details of the current crack locations and severity:-
 - Number & length of cracks >5 mm with spalling and bifurcation
 - Number and length of cracks <5mm wide
 - Location of cracks (e.g. in wheeltracks or everywhere)
 - Photographs are obviously very useful (e.g. 1m from road surface)
- Other criteria:
 - Traffic characteristics (number, type of vehicles, speed) specific for the jobsite need to be taken into account
 - Existing road construction
 - Location of service trenches
 - Identify probable existing cracking mechanism (eg thermal)
 - If relevant, the temperature variations in time (day/night, season)
 - The pavement and soil properties
 - Drainage and groundwater information

3 Performance and limitations

- Identify correct cracking mechanism i.e. Reflective or fatigue cracking.
- Set acceptable level of cracking over a specific time e.g 10% cracking in 10yrs
- Record traffic characteristics (number, type of vehicles, speed)
- Temperature variations in time (day/night, season).
- Pavement and soil properties relevant for the jobsite should be recorded.
- For maintenance, the existing condition of the pavement must form part or the design and crack mapping.

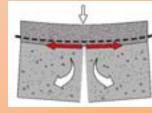
Section 5 - Determining the Solution

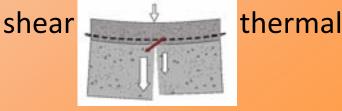
CONTE	ENTS	PAGE
1	Acknowledgements	3
_	Overview	4
3	Site Conditions and assessment	6
	 Existing site condition and history 	7
	 Determine required performance and limitations 	8
4	Geosynthetic Materials	8
	a. Types	8
	b. Quality assurance	9
	c. COSHH	9
5	Determining the Solution	9
	 Design considerations and failure modes 	9
	b. Design procedures and input parameters	12
	 System and material selection 	13
	 Specifying the Geosynthetic or Steel Mesh 	14
	e. Paving Fabrics as SAMI Layers	15
6	Installation	16
	 Selection of appropriate installation contractor 	16
	b. Planning the execution of the work	17
	c. Site preparation	17
	 Bond coat and application 	17
	e. Geosynthetic installation	18
	 Steel mesh installation 	18
	g. Overlay application	19
	h. Training	19
	i. Traffic management	20
	j. Health and Safety	20
7	Evidence of performance	21
	 Technical Reports/Client testimonial 	21
	b. Case Studies	21
8	Conclusions and Recommendations	35
	Appendices	1000
	Appendix A - Glossary of terms	36
	Appendix B – Bibliography	38
	Appendix C - Installation pictures	45
	Appendix D - Available design methods	47
	Appendix E - Adhesion test procedure	50

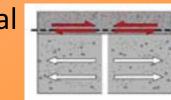
5 Design considerations & Failure Modes

Design considerations

Flexible Composite Pavements – construction/expansion joints, settlement and rocking of slabs – vertical shear
CBM/Lean Mix Road Base – surface break up and can act independent of roadway


Flexible Pavements – alligator cracking and rutting if weak foundations


Sett paved carriageways – delaminating and cracking


<u>& Failure Modes</u>

Reflective cracking

– bending



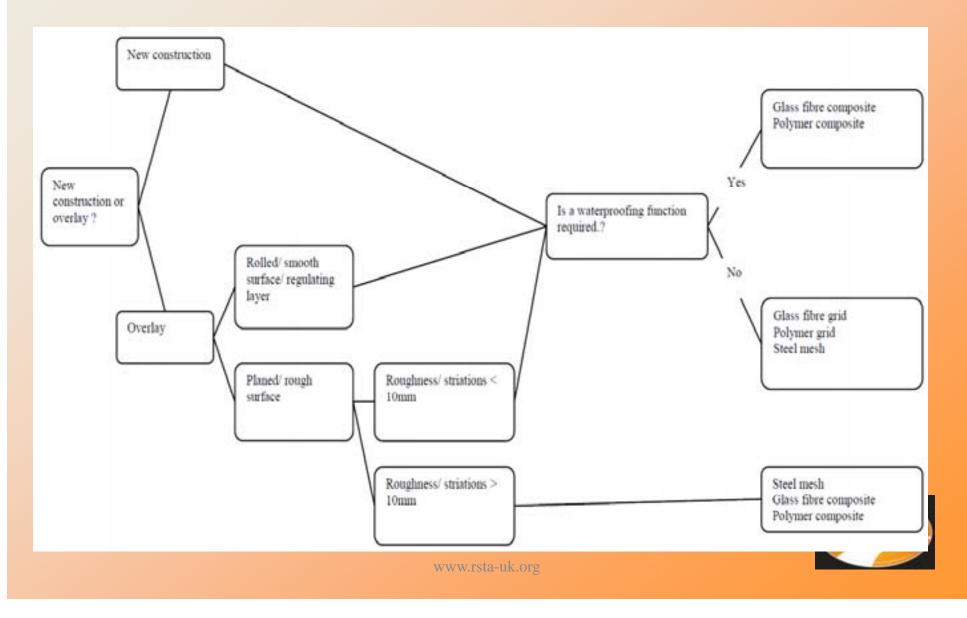
Geosynthetics & Steel Meshes Potential Sites!

Thermal movement

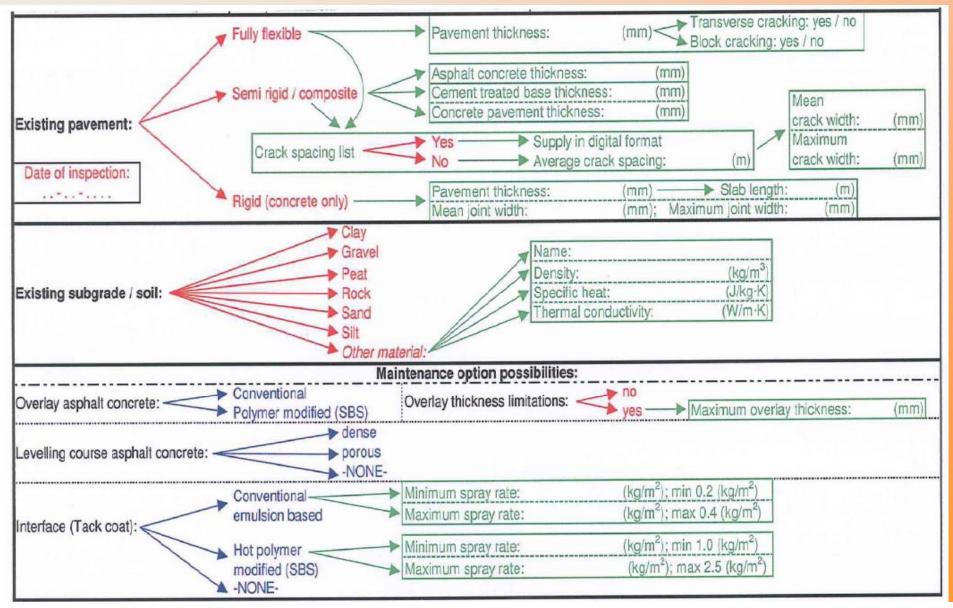
Utility Trenches

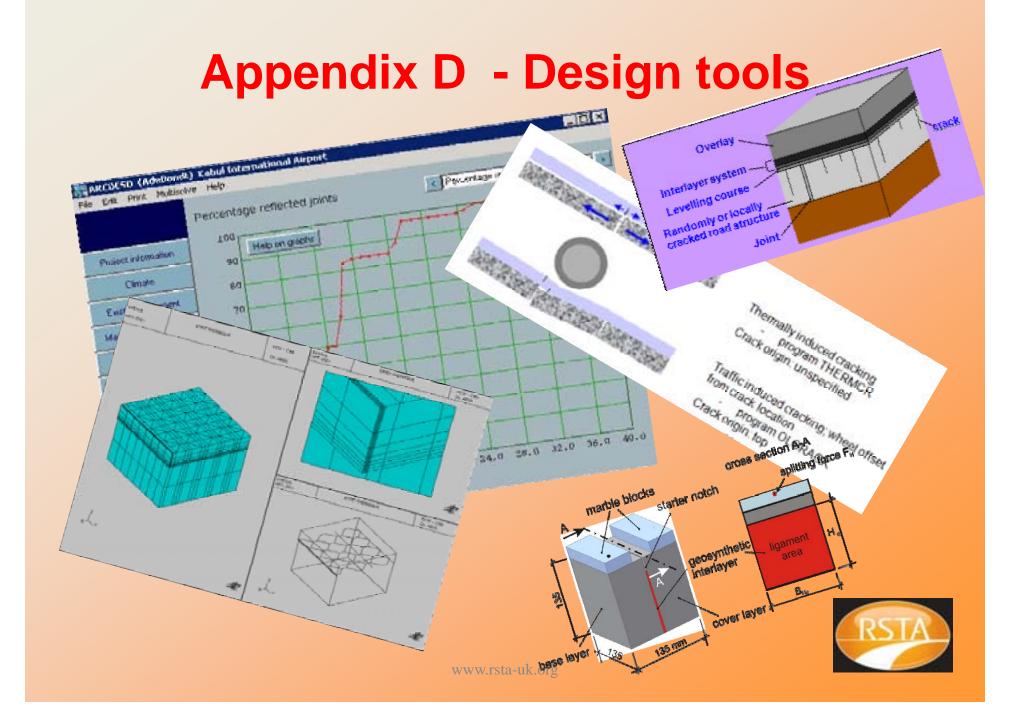
Expansion Joints

Underlying Setts


5 Design Procedures

- Take account of observations on site and identify correct crack mechanism
- The mechanical and durability characteristics of the steel mesh/geosynthetic (stiffness/strength) & interaction with asphalt admixtures & SAMI layers
- Geosynthetic or Steel mesh should be validated with long term monitoring field data leading to life-cycle costing analysis.
- End of its service life removal OR incorporated into recycled materials for reuse in further surfacing work.
- Design specification in line with European Standards and format (eg CEN) and produce sketch of the laying plan of the geosynthetic or steel mesh.


Consider design process in Appendix D, talk to member manufacturers



5 System & Material Selection

5 Design input sheet

5 Interlayer as a SAMI layer

- Stress absorbing layer where a flexible paying fabric becomes a composite with a bitumen layer to assist with absorption of vertical vibrations and stresses
- Can be used by itself of with a reinforcing grid
- Can be used under surface dressing
- Optimum thickness to absorb movement balanced agaisnt cost of fabric and absorbed bitumen

Geosynthetics & Steel Meshes Code Features

- Only addresses reflective cracking, not other failure modes
- Different products
 - Rolled Products in Grid form (polymer, glass, steel mesh)
 - Non-woven geotextiles (polymer and glass)
 - Composite and non-woven (both glass and polymer)
- Effectiveness depends on site condition selection is key
- Design no single procedure covers all conditions
- Installation is critical use experienced contractors with a well trained workforce and the correct equipment
- Surface preparation, bond coats and asphalt thickness is critical
- Aims to provide guidance on products available and identify key aspects affecting their use and provides evidence of performance

Conclusions

- The COP is a milestone in the development of the use of Interlayers in UK
- Following the advice in the COP will significantly reduce your risk and give better value for your road schemes
- Once you have assessed your road go to the contact list on RSTA website for members – innovative new materials being developed
- The COP is the industry engaging with the client looking for feedback – ADEPT and HA
- Taking account of views to gain best practice in the industry
 - ADEPT Local Authority Guidance Notes
 - HA Interim Advice Note
- Following feedback aim to publish Summer 2011 as National guidance document endorsed by ADEPT

Thanks for your attention!

