

Dr Paul L Chazot

School of Biological & Biomedical Sciences/ Durham Biophysical Sciences Institute/ NE Medicinal Plant Research Group (MPRG)

Medicinal plants: new uses & new mechanisms

Medicinal Plants: From crop to cure 29th March 2011

Recent positive projects in MPRG with various plant extracts

Dementias

- GINKGO (Ginko biloba)
- SAGE (Salvia officinalis)
- LEMON BALM (Melissa officinalis)
- GREEN TEA (Camellia sinensis)

Depression

• ST JOHNS WORT (Hypericum perforatum)

Alzheimers Disease

- Approx. 5% of people over 65 and 20% over 80 have dementia (700,000 UK)
- Many severely demented patients develop symptoms of agitation (severe restlessness, irritability and aggression)
- Antipsychotic drugs have been widely used to treat this e.g. risperidone, donezepil, major tranquilizers Side-effects:
 - Over-sedation
 - Social withdrawal/Reduced wellbeing
 - Falls
 - Further decrement in cognition
 - Possibly risk of stroke
- **URGENT NEED FOR ALTERNATIVE**

Apart from cognitive therapy, increasing clinical evidence for efficacy and safety of **plant essential oils** for symptoms such as agitation

AROMATIC ESSENTIAL OIL THERAPY CONTROLLED CLINICAL TRIALS IN PEOPLE WITH DEMENTIA –up to 4 weeks

Mitchell et al 1993 - 12 people, Melissa and lavender v placebo.

Holmes et al 2001 - 21 people with agitation, lavender, cross-over

Smallwood et al 2001 – 21 people, lavender, randomised comparison massage

Ballard et al 2002-72 people with agitation, Melissa, double blind placebo controlled

Lee et al 2005 - Lavender versus jojoba massage

Lai et al 2007 - 70 people Lavender versus sunflower oil inhalation SIGNIFICANT REDUCTION IN AGITATION/ AGGRESSION

PHARMACOLOGICAL DISSECTION ESSENTIAL OILS

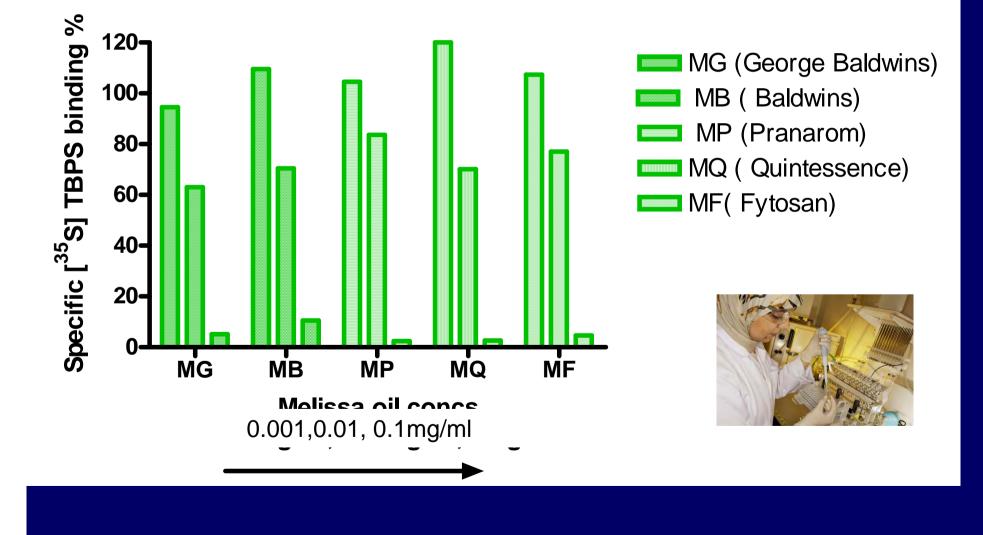
- **Essential oils** *Melissa officinalis (lemon balm)* and *Lavendula angustifolia (lavender) have* calming and sedative properties.
- Both essential oils (EO) may help in agitation
- Melissa may also increase attention (pro-cognitive)
- 3 trials: BMJ Editorial suggests improvement in behaviour, quality of life, as well as social and constructive activities

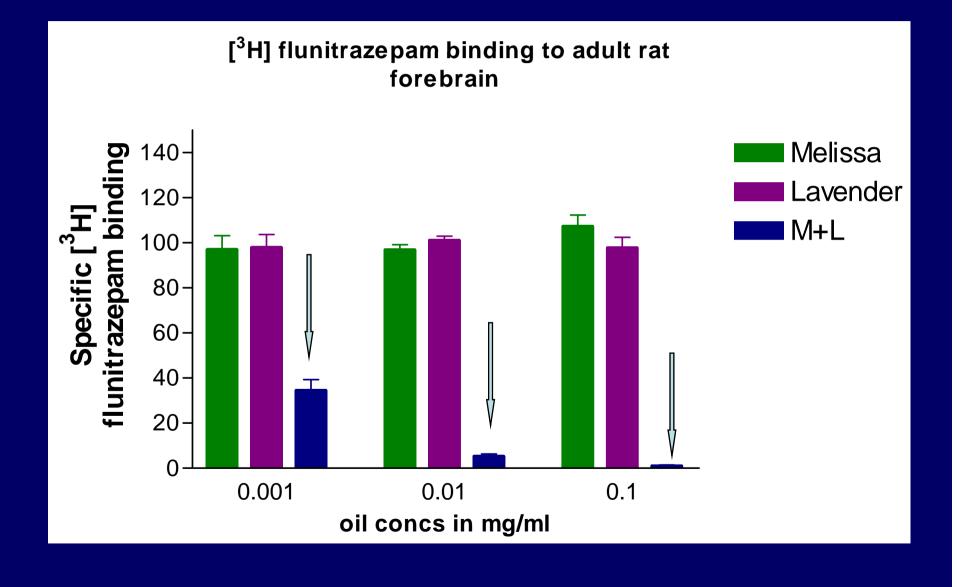
Burns et al (2002) BMJ;325(7376):1312-3

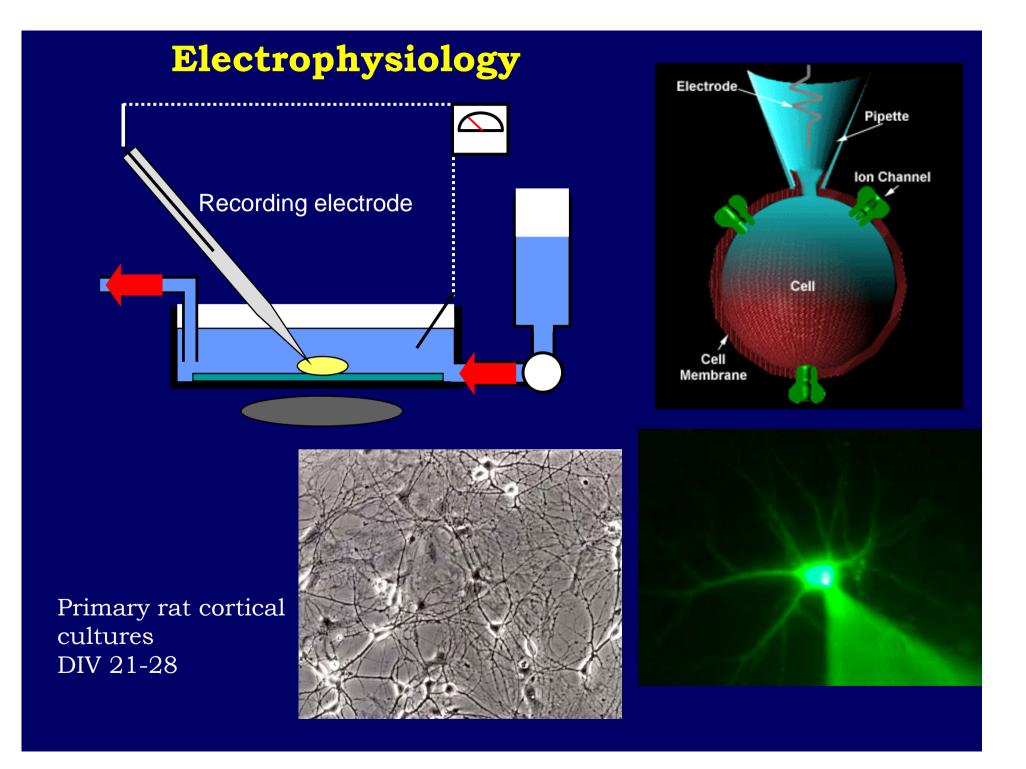
Ion Channels Investigated to probe mechanism

• GABA_A receptor major inhibitory receptor in the brain

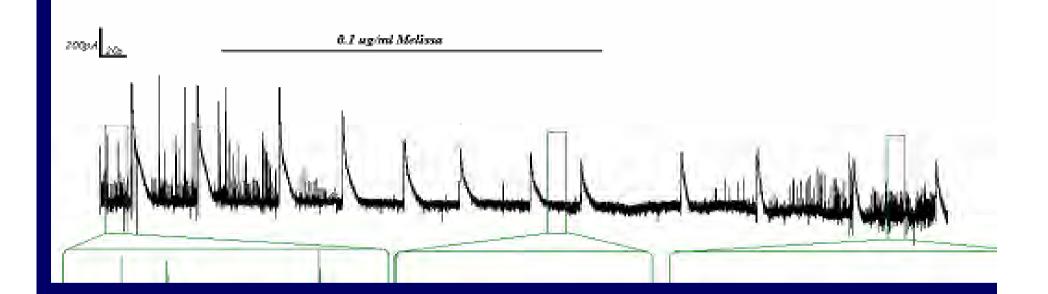
• Voltage-Gated Sodium Channel fundamental for neurotransmission


Radioligand binding pharmacological screens

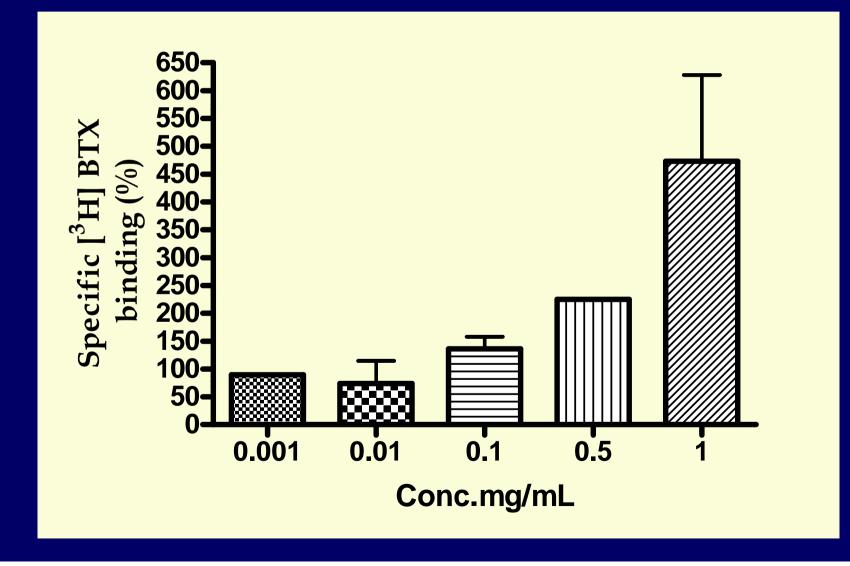

Both oils contain a GABA-A receptor blocker



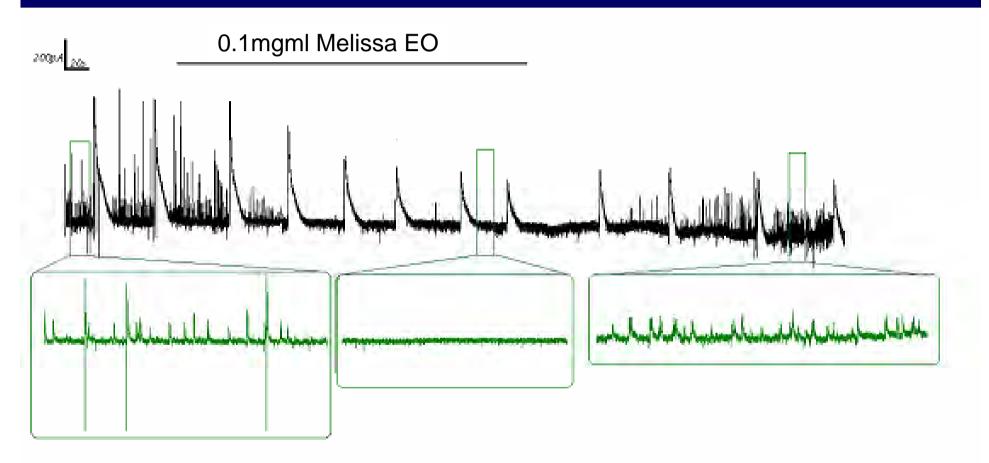
Melissa oil Batch supplier comparison



Melissa & Lavender EO Combination effect



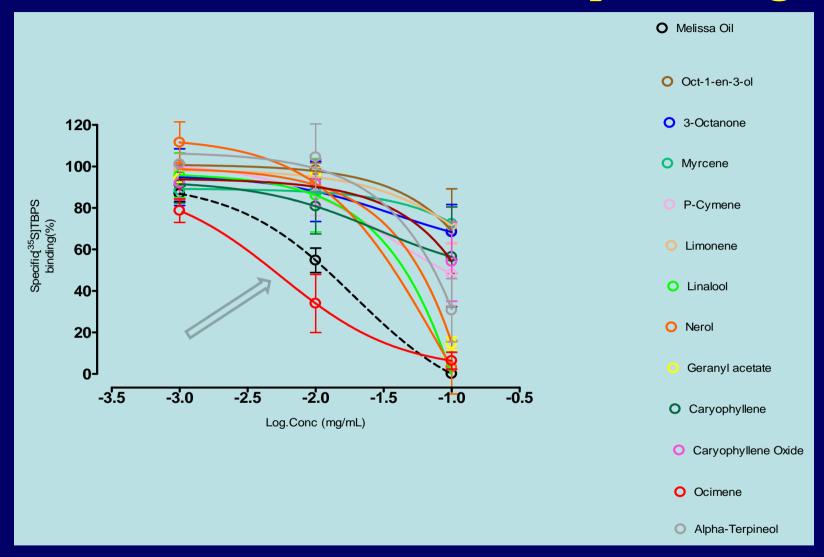
Both oils completely blocked evoked GABA inhibitory currents



Effect of MO on GABA-mediated currents in primary cortical neurons.

Both EOs contain a sodium channel modulator

Both oils are profoundly depressant despite disinhibition


Compounds detected in essential oils from both *Lavandula angustifolia* and *Melissa*, obtained from GC-MS

Compound	M.offinalis Oil Composition (%) ^a	M.offinalis Oil Composition (%) ^b	L.angustifolia Oil Composition (%) ^a	<i>L.angustifolia</i> Oil Composition (%) ^b
Oct-1-en-3-ol	0.6	0.6	0.2	0.2
3-Octanone	tr	tr	0.3	tr
Myrcene	0.1	tr	0.5	0.4
<i>p</i> -Cymene	tr	tr	0.2	0.3
Limonene	tr	tr	0.3	0.2
(E)-β-Ocimene	0.5	0.6	1.3	1.6
Linalool	0.8	0.8	30.8	31.1
α-Terpineol	0.1	tr*	1.3	1.7*
Nerol	0.9	1.1	0.2	0.3
Geranyl acetate	3.3	3.6	1.0	1.1
(E)-Caryophyllene	12.3	12.9	3.6	3.6
Caryophyllene oxide	3.9	3.7	0.6	0.7

^aChromatography performed on a DB-5MS phase ;^bchromatography performed on a ZB-WAX phase ;tr: < 0.1 % ;

* co-elution of α -terpineol and germacrene D.

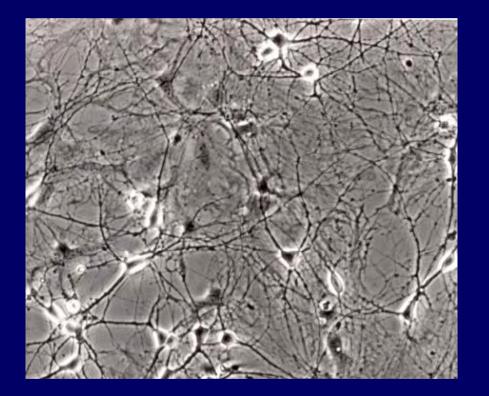
Identification of new GABAA receptor antagonist

The effects of Melissa officinalis essential oil constituents on TBPS binding to well-washed rat forebrain membranes. All data are expressed as the mean ± SEM from at least three separate experiments.

Effects of Melissa oil constituents on the channel binding site of the GABA_AR labelled by [³⁵S] TBPS

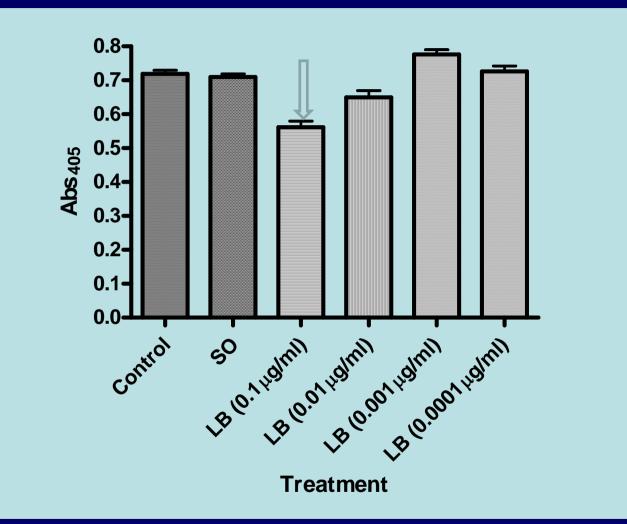
Chemical name	Molecular formula	IC ₅₀ (mg/ml)	IC ₅₀ (μM)
Melissa Oil	-	0.019	-
Geranyl acetate	$C_{12}H_2OO_2$	17.11	87166.9
(E)-Caryophyllene	C ₁₅ H ₂₄	0.028	137.7
Caryophyllene oxide	C ₁₅ H ₂₄ O	0.584	2650.3
Limonene	C ₁₀ H ₁₆	0.256	1878.3
Myrcene	C ₁₀ H ₁₆	6.840	50205.5
Ocimene*	$C_{10}H_{16}$	0.006	40.5
<i>p</i> -Cymene	CH ₃ C ₆ H ₄ CH(CH ₃) ₂	0.035	261.6
3-Octanone	C ₈ H ₁₆ O	0.038	298.6
Linalool	C ₁₀ H ₁₈ O	0.900	5836.6
Nerol	C ₁₀ H ₁₈ O	0.079	513.3
Oct-1-en-3-ol	C ₈ H ₁₆ O	1.140	8890.9
α-Terpineol	C ₁₀ H ₁₈ O	0.211	1369.2

Effects of Melissa oil constituents on the sodium channel binding labelled by [³H] BTX-B


Chemical name	Molecular formula	EC ₅₀ (mg/mL)	EC ₅₀ (μΜ)
Geranyl acetate	C ₁₂ H ₂ OO ₂	>1	-
(E)-Caryophyllene	C ₁₅ H ₂₄	>1	-
Caryophyllene oxide	C ₁₅ H ₂₄ O	>1	-
Limonene	C ₁₀ H ₁₆	>1	-
Myrcene	C ₁₀ H ₁₆	>1	-
Ocimene	C ₁₀ H ₁₆	>0.5	-
<i>p</i> -Cymene	CH ₃ C ₆ H ₄ CH(CH ₃) ₂	>1	-
3-Octanone	C ₈ H ₁₆ O	>1	-
Linalool	C ₁₀ H ₁₈ O	>1	-
Nerol	C ₁₀ H ₁₈ O	>1	-
Oct-1-en-3-ol	C ₈ H ₁₆ O	>1	-
A-Terpineol	C ₁₀ H ₁₈ O	>1	-

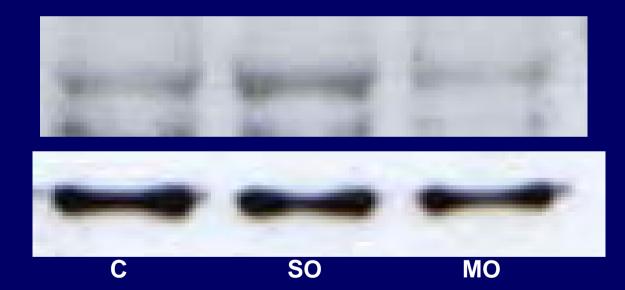
•No potent effects (< 0.5 mg/ml) of major components upon [³H] BTX binding

•The sodium channel modulator is likely to be a minor component


•Fractionation and more sensitive detection methods required

Biochemical pharmacology screen

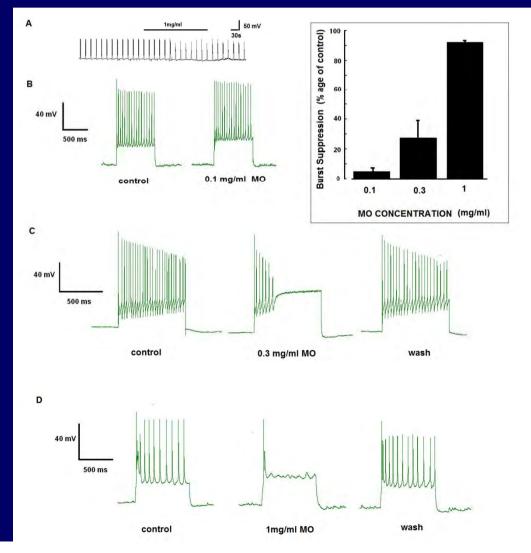
Sunflower oil (control) v Melissa essential oil


Melissa oil is mildly neurotoxic at high concentrations

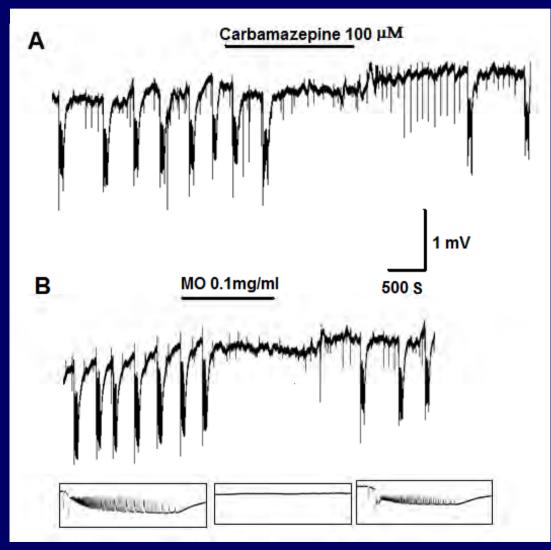
Mild toxicity at high concentrations consistent with low affinity GABAAR inhibitory properties/modest protection at 0.001mg/ml

Dominating neuronal depressant activity

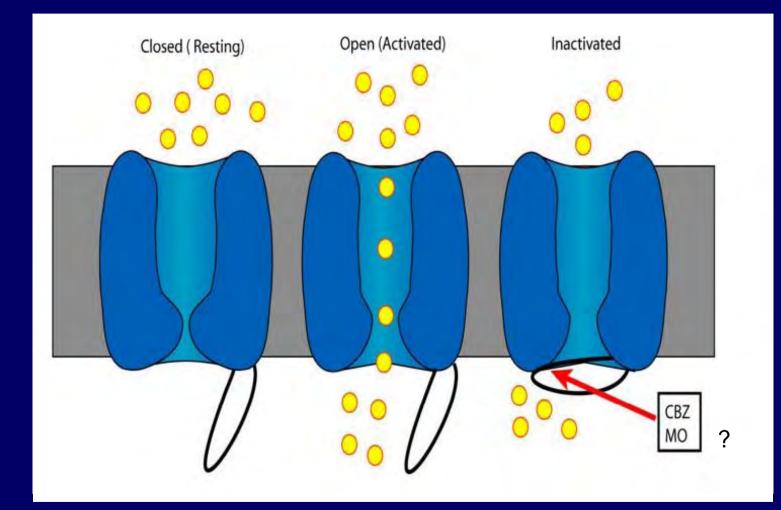
Effect of MO (24h exposure) on cfos expression


Exposure to MO (0.01 mg/ml) reduces *cfos* expression (marker of neuronal activation

Approach to separate the various pharmacological components: Solid Phase Fractionation of Essential oils


	Whole	Fraction 1	Fraction 2	Fraction 3
1-Octen-3-ol	0.4	0	Tr	1.4
3-Octanone	~~~ ¹	i	U	Tr
Myrcene		2.6	0.1	Tr
a -Phellandrene			0	0
2-d-Carene	0.3		0	0
Hexyl acetate		Tr		0
		Hydrocarbons (incl. ocimene	Carbonyls Ethers esters	Primary alcohols Diols Acids

New Potential of Melissa in epilepsy and hyperalgesia


Reversible depressant effects of MO on evoked bursts of action potentials & Concentration-dependent suppression of the secondary spikes in the burst profile

MO can reversibly reverse ictal-like epileptiform activity in a 4-AP-induced brain slice (visual cortex) model for epilepsy

The modulated site for anticonvulsants on the VGSC complex

Melissa and Lavender EO Pharmacological dissection

- The volatile oils contain a novel GABA_A receptor antagonist lead compound, namely ocimene
- The dominant net effect of the essential oils (lavender & Melissa) on neurons is depressant
- The mechanism for depressant defined as inhibition of membrane excitability/electrogenesis via a VGSC
- Fractionation protocols & computer modelling strategies under development for identifying VGSC modulators
- We have identified novel therapeutic arenas for use of Melissa and Lavender essential oils, namely epilepsy & hyperalgesia

Acknowledgements

Durham University:

Dr Paul L Chazot, Rushdie Abuhamdah Dr Sawsan Abuhamdah (now University of Jordan, Amman)

Formally Otago University Medical School, NZ: Prof George Lees, Ihaia Hoskin, Dr Liping Huang

Sunderland Pharmacy School:

Dr Abdel Ennaceur, Mwajuma Mahita

Newcastle University: Prof Elaine Perry, Dr Mike Carroll

Kew Gardens: Dr Melanie-Jayne Howes

FINANCIAL SUPPORT ALZHEIMERS SOCIETY UK, Durham Wolfson Institute, Islamic Development Bank