

Recent research on surface texture

Presented by Martin Greene Senior Researcher – 20/10/11

Surface texture and tyre tread depth

1	Introduction
2	Characterising tyre texture
3	Skid resistance test programme
4	Results
5	Sumary of conclusions

Introduction

- Study undertaken for the Highways Agency:
 - Responsible for motorways and trunk roads in England
 - Focus on building, maintaining and operating safe roads
 - Objective to reduce adverse effects of strategic roads on the environment

Introduction

- Road surface texture and tyre tread depth can influence safety
 - Wet grip, especially at higher speeds
 - Spray
- But also contribute to environmental effects
 - Noise
 - Rolling resistance
 - Aggregate supply
 - Tyre manufacture
 - Disposal of used tyres

Introduction

- Project aimed at identifying an appropriate balance between surface texture on the road and tyre tread depth
 - In keeping with HA's objectives for safety and the environment

Texture

- Microtexture provides the grip
- Texture depth helps to keep it at higher speeds

Measuring texture depth

- Two approaches
- Volumetric
 - Texture depth = Void volume / Surface area
 - Standard test uses glass spheres spread over a circular patch of the road surface
 - Localised measure of texture
- Laser measurements
 - Measure the profile of the surface
 - Continuous measurement
 - Sensor Measured Texture Depth (SMTD): root-mean-square measurement of texture (routine monitoring in the UK)
 - Mean Profile Depth (MPD): average depth below plane containing highest points in the surfacing

Recent research

- Tyre tread can act in a manner analogous to surface texture
- Current skid resistance measurements use a smooth tyre
 - Could current surface texture requirements be relaxed if the influence of tyre tread was taken into account?
 - Reduced tyre noise and rolling resistance
 - Better use of premium aggregates
- However......
- Research has also shown that:
 - Where water depths exceed 2mm, current minimum tread depth requirement may not be adequate
 - Motor industry tests have shown that for wet stopping distance a tread depth of 3mm gave 25% better performance than 1.6mm

Characterising tyre texture

- Need to relate tyre tread depth and pattern to a texture depth
- Applied the volumetric principle
 Texture depth = Void volume / Surface area
- Requires measurement of contact area and average tread depth

Characterising tyre tread

- Used the "Tekscan" system
 - Loaded wheel applied to a pressure sensor mat
 - Measures load distribution on the tyre
 - Provides data on the overall size of the contact patch and the area of loaded cells
- Tread depth measured with a digital depth gauge at several points around the tyre

Tekscan image

Friction measurements

- Undertaken using HA's Pavement Friction Tester (PFT).
- Locked wheel friction device
- Peak and average locked wheel values recorded
- All tests conducted at 100km/h
 - Influence of texture on friction greater at higher speeds
 - Representative of typical traffic speeds

PFT measurement cycle

Test tyres

- ASTM smooth tyre
- ASTM ribbed tyre
 - Simple circumferential groove tread pattern
- Range of production road tyres with different tread patterns
- Tested in as new condition and machined down to provide lower tread depths
- Tyre texture depths ranged from 0 to 3.2 mm (volumetric)

Test surfaces

- Sections on TRL test track
 - Thin Surfacing (14mm aggregate)
 - Experimental thin surfacing with 6mm aggregate (MARS)
 - HRA
 - Grooved concrete (GC)
 - Brushed concrete (BC)
- Trial site on HA network
 - Proprietary thin surfacings
 - 6, 10 and 14mm aggregate sizes (T1 T6)
- Surface textures ranged from 0.37 to 1.8mm (SMTD)

Water application

- PFT self wetting system.
- Nominal water depths of 0.5 and 1mm.

Spray bars located on some of the TRL test track sections.

Questions addressed

- How is skid resistance affected by water depth?
- How does skid resistance change as the surface dries out?
- Is the PFT self-wetting system representative of a "wet" road?

Method

- Surface was saturated using the spray bars.
- PFT self-wetting system turned off.
- Initial test undertaken with spray bars still operating.
- Spray bars turned off.
- Repeat friction tests at intervals as surface dried.

Results (14mm Thin Surfacing)

Results

- In saturated conditions smooth tyre friction was noticeably lower than in self-wetting tests
- As the surface dried:
 - Locked wheel friction recovered
 - to levels comparable to the self-wet levels
 - Peak friction was slightly higher than the self-wet levels

Results

- Ribbed tyre coped better in flooded conditions
 - but did not show same increase in peak friction as the surfaces dried
- Results consistent with physical effects
- PFT self-wetting system provides conditions similar to those shortly after a period of heavy rain
- Friction levels reduced compared to dry friction for some time as the surface dries

Questions addressed

 How do tyre characteristics (tread pattern and depth) affect skid resistance?

Method

- PFT self-wetting system turned on
- Measurements at 0.5 and 1mm nominal water depth
- Standard test tyres and road tyres
- Range of surfaces

Locked-wheel friction for 1mm self-wet tests

Results

- Friction levels measured with the smooth test tyre broadly increase with increasing texture depth of the surfacings
 (HRA >14mm Thin Surfacing > 6mm Thin Surfacing > GC > BC)
- Similar trends for treaded tyres but friction levels on 6mm Thin Surfacing are higher than HRA or 14mm Thin Surfacing
- Friction levels remain sensibly constant above about 2mm of tyre texture depth

Combining surface and tyre characteristics

- Surface texture and tyre texture were combined
 - Simple arithmetic sum

Combining surface and tyre characteristics

 Additional data from trial site on HA network included and previous tests on TRL track

Results

- Rate of decrease in friction increases below a combined texture of about 1.5 – 2mm
- Friction levels measured on the surfaces incorporating 6mm aggregates provide high levels of friction in spite of the low combined texture levels
 - Combined texture is not the only indicator of high speed friction

Assessment of results

Tyre are	nortion	Combined texture (mm)			
i yre pro	percies	Road Surface texture (mm)			
Tread depth (mm)	Approx. tyre texture depth (mm)	1.1	0.8	0.4	
6 (new)	2.2	3.3	3.0	2.6	
3 (recommended)	1.1	2.2	1.9	1.5	
1.6 (legal min.)	0.6	1.7	1.4	1.4	

 Combinations of low tread depth and low surface texture provide a combined texture below the level where a downturn in high speed skid resistance was observed

Summary

- Surface texture and tyre texture appear to be interchangeable
 - Appears to be a level of combined texture above which high speed skid resistance does not increase markedly
 - Other properties appear to influence the high speed skid resistance performance of the tyre (tread pattern, material composition)
- Current UK requirements for texture on new surfaces and minimum tyre tread appear adequate
 - Low tread tyres on older pavements with low texture could increase risk
- Any reduction in required road surface texture would need to be offset by an increase in required tread depth (or "tyre texture")
- Further research needed into skid resistance performance of thin surfacings with smaller sized aggregates (6mm)

Thank you

Presented by Martin Greene Senior Researcher – 20/10/11 Tel: +44 (0)1344 770278 Email: <u>mgreene@trl.co.uk</u> © TRL Limited 2011

