

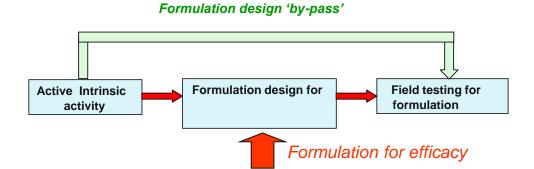
Biodelivery across leaf/skin membranes - formulating for biodelivery

Trevor Blease Croda Chemicals Europe

Innovation in Colloid Formulation: Secrets of Formulation III Wednesday 16 November 2011

Introduction

• How do we design formulation for maximum efficacy?



Introduction

• How do we design formulation for maximum efficacy?

Foliar penetration

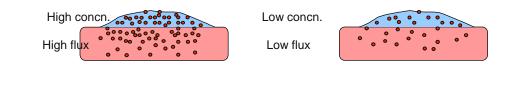
- J = (K.D/ L) ∆C
 - J = steady state flux of penetrant across membrane
 - K = partition coefficient i.e. the distribution coefficient of the penetrant between the membrane barrier and the donor vehicle.
 - D= diffusion coefficient through membrane
 - L= path length through membrane
 - ΔC = concentration difference across the membrane

Foliar penetration contd.

• Activity _{subst.} = Activity _{form.}

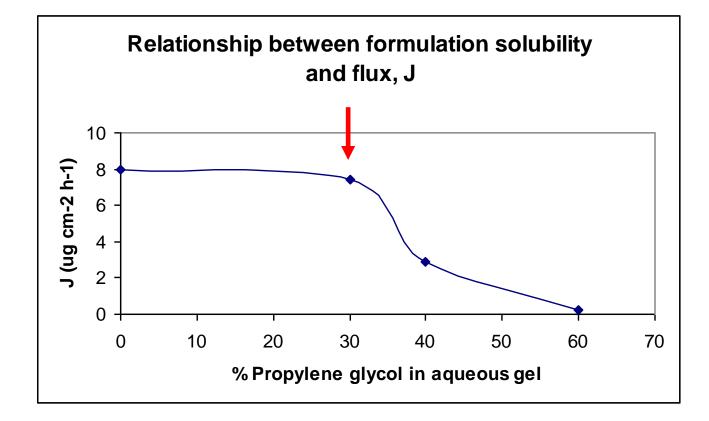
• C _{subst.} / sol limit _{subst.} = C _{form.} / sol limit _{form.}

• K = C _{subst.} / C _{form} = sol limit _{subst.} / sol limit _{form}


CRO

Foliar penetration contd.

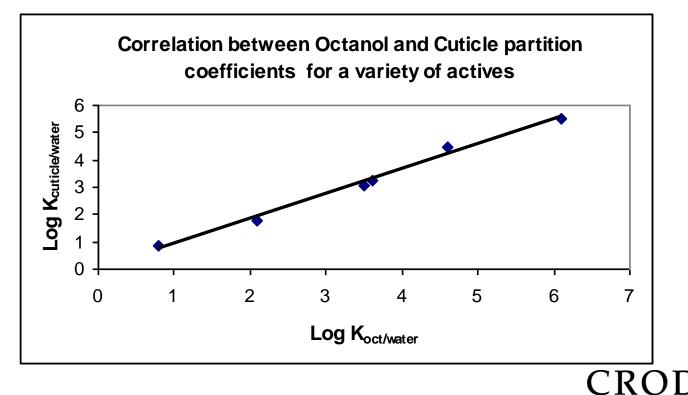
- C _{subst.} / sol limit _{subst.} = C _{form.} / sol limit _{form.}
- K = C _{subst.} / C _{form} = sol limit _{subst.} / sol limit _{form}



• K _{subst./form} . C = 'driving force'

Example of driving force effect : Diclofenac sodium ex-aqueous gel

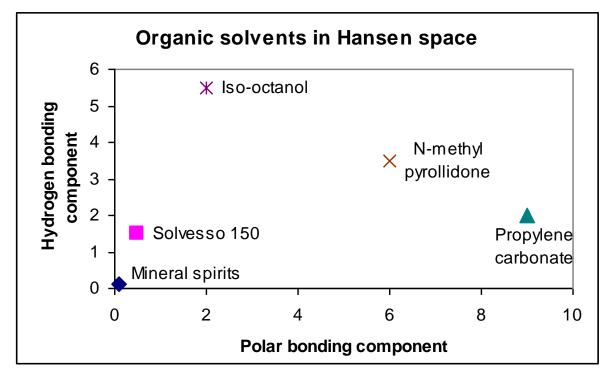
Increased sol limit _{form} -> Decreased K -> Decreased J



<u>CRODA</u>

Predicting K values

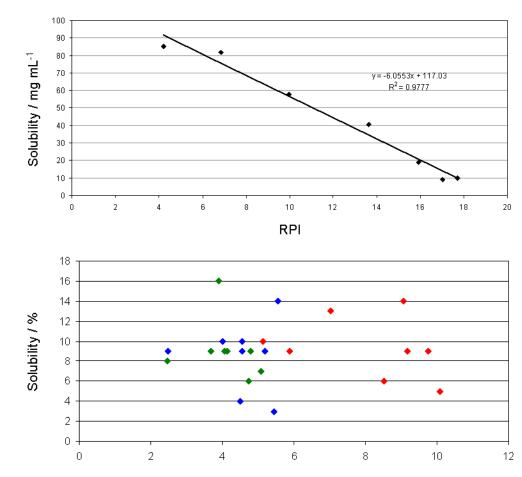
- Octanol/water partition coefficients (log K _{oct/w})
- Correlation with log cuticle /water



Predicting K values contd.

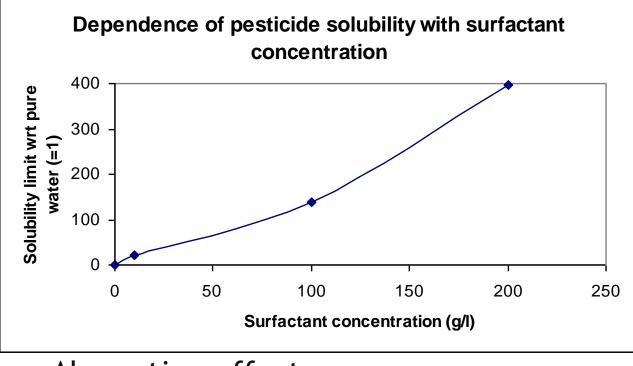
•Hansen solubility

$$\Delta T = \sqrt{\left(\mathbf{f}_d \right)^2 + \left(\mathbf{f}_p \right)^2 + \left(\mathbf{f}_h \right)^2}$$


CRC

Nature & technology in harmony

Hansen solubility contd.


RPI

<u>CRODA</u>

Measuring K values - donor medium

• Evaporation effects

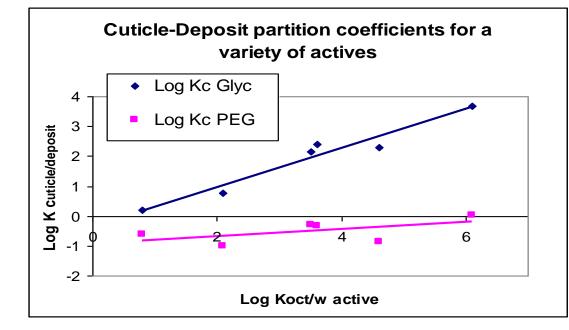
CRC

Absorption effects

Measuring K values - substrate medium

- Leaf structure complicated
- Focus on rate-determining step
- Wax extraction ->massive permeability increase
- Permeation of reconstituted extractable wax ~ that of cuticle
- Intracuticular rather than epicuticular wax shown to be transport-limiting

Active K values


- Lipophilic systemic actives
 - Log K _{o/w} 3 +/- 1 is good balance
 - <2 limited partitioning into substrate
 - >4 accumulation in cuticle rather than underlying tissues
- Hydrophilic actives Log K _{o/w} <<1
 - 'Polar pathway'
 - Transport limiting stage less obvious

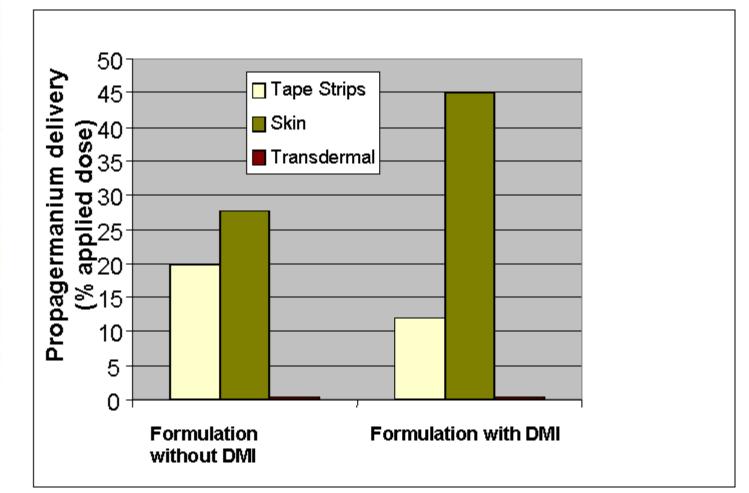
Driving force effect on cuticledeposit partitioning

- PEG 400 good solvent for all actives
- Glycerol only for hydrophilic actives
- Water uptake reduces PEG solvency for lipophilic actives

Effect of adjuvant absorption into substrate : partition coefficient

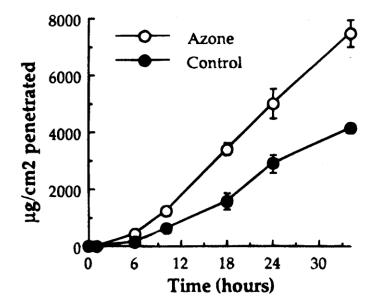
- K = C _{subst.}/C _{form} = sol limit _{subst.}/sol limit _{form}
- Adjuvant classification
 - Passive (donor, dissolving)
 - Active (accelerator, plasticising)
- Examples of active adjuvants
 - Surfactants e.g. alcohol ethoxylates
 - Crop oils
 - Transcutol®
 - Dimethyl isosorbide (DMI)

Nature & technology in harmony


DMI effect on dermal uptake of hydrophilic active

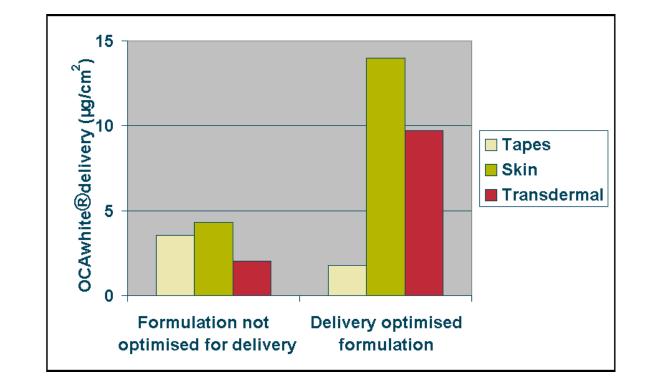
- EW Formulation
 - 18% ester moisturising oils
 - 6% surfactant
 - 0.5% Propagermanium
 - 4% glycerine
 - 0 or 10% Arlasolve® DMI
 - q.v. water
- Skin penetration after 24 hours
- Tape stripping removed successive layers of the membrane
- Inductively coupled plasma mass spectrometry analysis

Effect of adjuvant absorption into substrate contd.



Effect of adjuvant absorption into substrate : diffusion coefficient

- J = (K.D/ L) ∆C
- 'Accelerator' adjuvant Active penetration rate matching


'2 in 1' enhanced delivery EW formulation

- 2% Lipophilic active
- 18% Ester moisturising oil selection
 - Accelerator oils chosen
 - Oil blend such that active at solubility limit (max. activity)
- Tape stripping after 24 hours
- Radioactivity detection

Effect of adjuvant absorption into substrate

Deposit formation

• Crystallisation v. Partitioning dilemma

Deposit formation

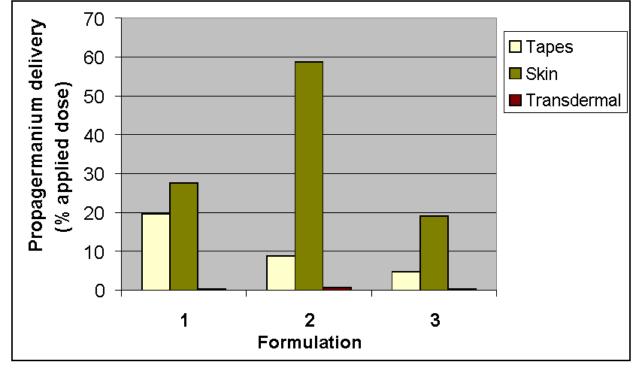
- Crystallisation v. Partitioning dilemma
- Phase diagram for non-volatiles
 - Surfactant-free
 - Surfactant-containing

Surfactant	Chemical description	<u>20%</u>	<u>30%</u>	<u>40%</u>	<u>50%</u>	<u>60</u>
Atplus® 450	Alkyl polysaccharide blend	L ₁	L ₁	L ₁	L ₁	L_1
	POE(15) C13 monobranched					
Atplus® MBA 13/15	alcohol	L ₁	L ₁	V ₁	H ₁	H_1
Synperonic® A7	POE(7) C13-15 alcohol	L ₁	L_1	H_1	H ₁	L_a
Synperonic® A20	POE(20) C13-15 alcohol	L ₁	V_1	V_1	V_1	H_1

 L_1 = isotropic micelle phase; V_1 = cubic phase; H_1 = hexagonal phase; L_a =lamellar phase; L_2 = inverse micelle phase.

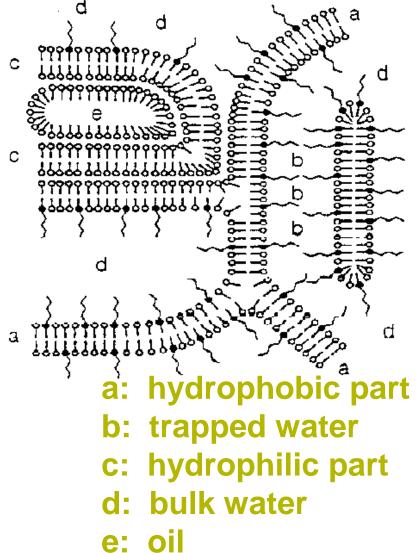
Surfactant dry down effects

Viscosity



Nature & technology in harmony

Surfactant dry down effects


- Viscosity
- Water retention

'Hydrosome' mesophase structure

CRODA

Summary

- Maximise activity of lipophilic actives in oil phase
- Use carefully selected range of formulants e.g. surfactants
 - Passive v. active
 - Different phase behaviour
- Study state of active in dried down deposit
- Environmental factors

