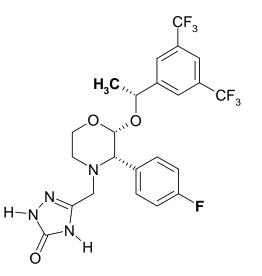

### **Brainteaser – NK-1 receptor antagonists**

**Strategies:** 

Lower overall lipophilicity of compound - find areas of the molecule where logD can be lowered Identify and block sites of metabolism




### A Solution....

cLogD = 3.9  $CF_{3}$   $CF_{3}$   $CF_{3}$  H-N H

H<sub>3</sub>C<sub>1/1</sub> H<sub>1</sub>C<sub>1/1</sub> H<sub>1</sub>C<sub>1/1</sub> H<sub>1</sub>C<sub>1/1</sub> H<sub>1</sub>C<sub>1/1</sub> H<sub>1</sub>C<sub>1/1</sub> H<sub>1</sub>C<sub>1/1</sub> H<sub>1</sub>C<sub>1/1</sub> H<sub>1</sub>C<sub>1/1</sub> H<sub>1</sub>C<sub>1/1</sub>

CF<sub>3</sub>

**cLogD** = 4.1



NK-1  $IC_{50} = 0.1 \text{ nM}$ 

NK-1 IC<sub>50</sub> = 0.16 nM Effect at 8 hours: 97% 24 hours: 66%

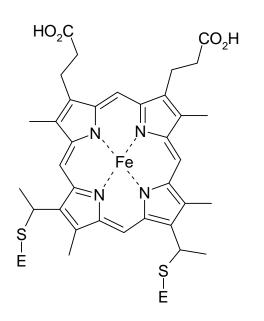
NK-1 IC<sub>50</sub> = 0.09 nM Effect at 8 hours: 100% 24 hours: ID<sub>50</sub> = 0.55 mg/kg p.o.

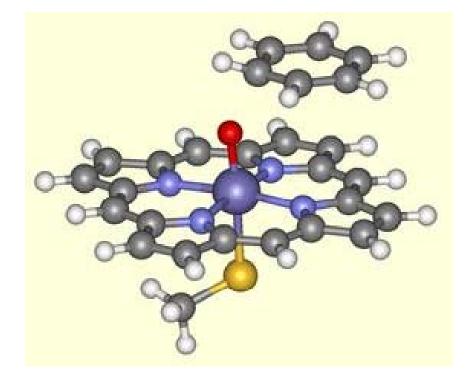
MK-869 for emesis

### **Before Lunch....a re-cap**

- Absorption
  - Solubility
  - GI Instability
  - Permeability
  - Efflux
- Clearance
  - Plasma instability
  - Biliary elimination
  - Renal elimination
  - Liver metabolism

- Decrease logD / planarity
- Increase logD / rigidity
- Clearance
  - Decrease MW
  - Increase logD
  - Decrease logD / electron density


## 99 Now...


### Clearance continued

- Which enzymes are involved in PhI metabolism
- Drug: Drug Interactions
- Clearance and link to duration of action
  - Volume of distribution, half-life, PPB

### Ph I - Cytochrome P450 Enzymes

- Carry out Phase I oxidations in liver cells (also present in the intestine)
- Membrane-bound Haem-containing proteins coordinating Fe<sup>II/III</sup> at the active site
- Found embedded in the endoplasmic reticulum (a cellular transport system composed of a honeycomb of membrane pervading the entire cytoplasm)
- Account for the biotransformation of approx. 60% of commonly prescribed drugs
- Cofactors: NADPH and molecular oxygen





## Cytochrome P450 (CYP, P450)

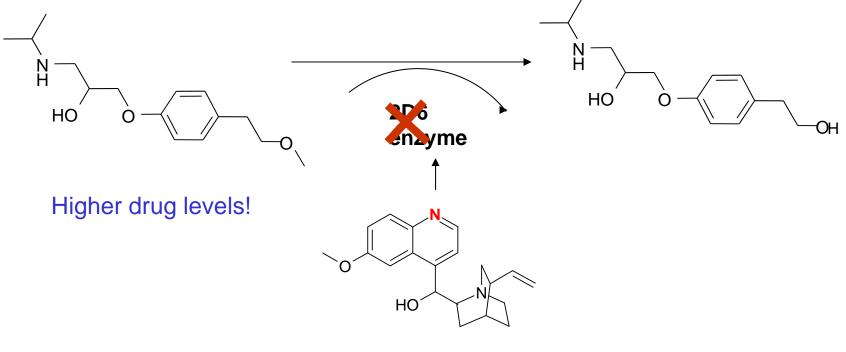
- ~ 1000 isoforms known, > 100 in man!
- 74 families, 17 in man
- Many are responsible for metabolism of endogenous agents eg steroids
- Some have multiple alleles (polymorphism) eg CYP2D6
- Some are not expressed in liver, but in lung, nasal mucosa, kidney, white blood cells
- CYP2D6 also found in brain
- CYP3A4 also found in intestine
- Some isoforms are inducible 3A4, 2C9, 2C19, 2E1, 1A1, 1A2, 2B6
- Some are not 2D6

### **CYP substrate specificity**

- 1A2 flat aromatic molecules & halo benzenes caffeine, haloperidol + erythromycin; easily induced by smoking, broccoli
- 2B6 cyclophosphamide
- 2C9 S-warfarin, phenytoin, diclofenac & other NSAIDs, tolbutamide, losartan
- 2C19 diazepam, tricyclic antidepressants, dextromethorphan, omeprazole
- 2D6 debrisoquine, beta blockers, antipsychotics, dextromethorphan, SSRIs, TCAs, tolteridine, etc; important polymorphism
- 2E1 paracetamol, ethanol, tolbutamide, isoflurane
- 3A4 terfenadine (hERG!), Ca blockers, midazolam, CsA, TCAs, opiates, steroids, many others; very wide range of activity and easily induced and inhibited

## **CYP** inhibition (competitive)

- Every substrate of a enzyme must also be an inhibitor of that enzyme
- To be a substrate of a CYP, a compound must first bind to the protein before it can be oxidised
- This is why higher logP often leads to faster metabolism, by increasing the affinity for the protein
- Sometimes, if you block all the sites of oxidation, the new compound binds very well to the CYP protein, but cannot be easily oxidised, making it a potent inhibitor
- CYP inhibition is a growing problem in drug discovery and development because there are so many other drugs around that there are many possible drug-drug interactions DDIs
- Investigations into possible DDIs can delay approval of a drug by years


### **CYP induction and TDI**

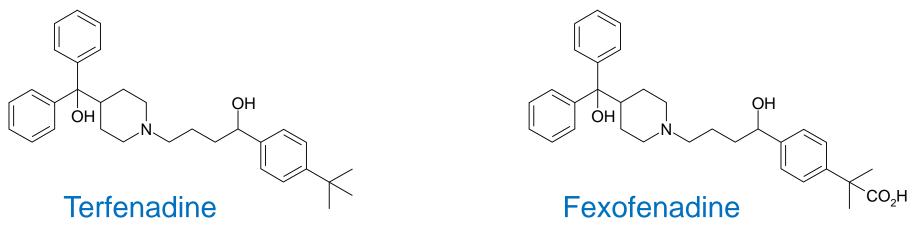
- Some compounds bind to nuclear transcription factors which promote the expression of certain CYPs, leading to increased expression and activity
- This is another cause of DDI.
- Another type of DDI can be caused by time-dependent inhibition (TDI) which is often caused by the formation of a reactive metabolite which permanently inactivates an enzyme
- DDIs are usually dependent on the concentration of drug in the liver. Thus, DDIs can limit the dose and exposure of a new drug and indirectly be the cause of insufficient efficacy at an acceptable dose size.
- Therefore, it is best to eliminate as many as possible causes of DDIs in Lead Optimisation

### **CYP** Advice

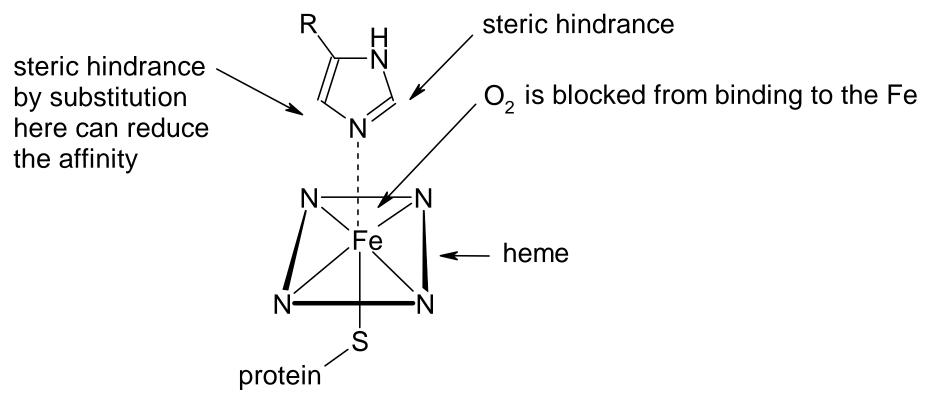
- Avoid metabolism by sole isoform bigger risk of clinically significant drugdrug interactions (DDIs)
- Avoid predominant metabolism by CYP2D6 too many poor metabolisers
  - In silico screening for easily oxidised position 5 or 7 Å from basic nitrogen
- Or CYP3A4 very wide range of activity in population
- CYP oxidation requires two properties:
  - 1 binding to protein
  - 2 oxidisable position
  - If you prevent oxidation by blocking without lowering affinity, you will turn a good substrate into a good inhibitor! Some blocking groups increase lipophilicity, increase binding, increase inhibition
- Avoid notorious problem groups eg 4-pyridyl-, 4-imidazolyl-
- Use suitable (PBPK) software Simcyp includes variability in populations and extrapolates from in vitro data to predict PK and drug-drug interactions

# Drug:Drug Interactions – the basic concept




2D6 Enzyme inhibitor

### **Cytochrome P450s Drug-Drug Interactions**


- Drugs may inhibit/promote P450 enzymes
  - Phenobarbitone induces (promotes) P450 enzymes
  - Cimetidine inhibits P450 enzymes
  - Both interact with the anti-coagulant warfarin
    - Phenobarbitone makes it less effective
    - Cimetidine slows the metabolism (potential safety issues)
  - Administration of a CYP3A4 inhibitor with cyclosporin (immunosuppresant) allows lower dose to be used
- A clear understanding of CYP interactions is important for all new drugs (inhibition can be measured *in vitro*)

### Cytochrome P450s Impact of food & smoking

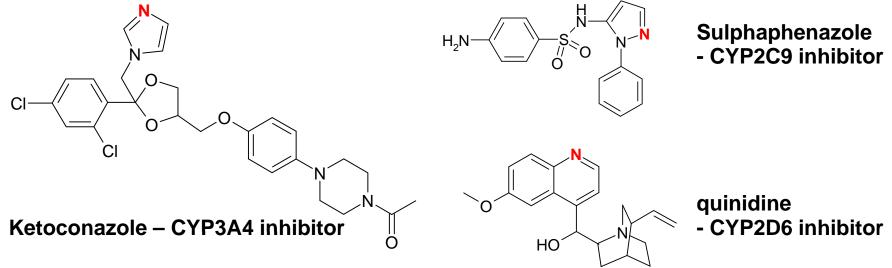
- Some foods affect P450 activity
  - Brussel sprouts and smoking enhance P450 activity
  - Grapefruit juice inhibits activity
- Terfenadine (inactive) is metabolised to fexofenadine (active, antihistamine)
  - Metabolism is inhibited by grapefruit juice
  - Terfenadine also blocks cardiac K-channel (hERG)
  - Potential for increased amount of terfenadine in the body leading to cardiac toxicity



### **Inhibition of Cytochrome P450's**

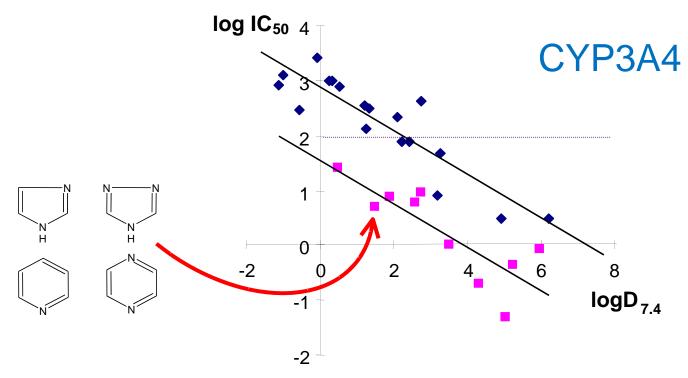


- Nitrogen atom displaces water from heme complex
- Introduction of steric hindrance around N-atom (eg alkyl groups) may reduce interaction
- Look for isosteres of the aza/ diaza groups and reduction of electron density


### Inhibition of cytochrome P450's

Potency of inhibition has been correlated to lipophilicity of compounds
lowering logP is a good strategy for reducing CYP450 inhibition

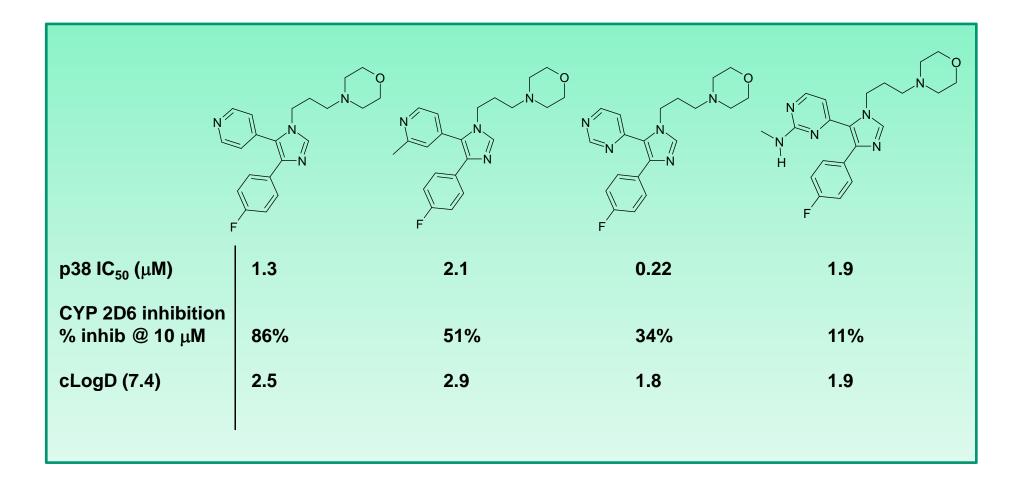
- Reactive metabolites of compounds may covalently bind to P450
  - mechanism based inhibitors (usually irreversible)
  - N-methyl groups, alkenes, alkynes, furans, thiophenes, methylenedioxy


groups

• Certain structural features may lead to reversible inhibition eg aza, diaza groups



### **Drug Interactions**


- Cyp 3A4 has logD dependence



- General LogD<sub>7.4</sub> trend (consistent with active site)
- Sterically uninhindered N-cont. heterocycles
- Applicable to Project Chemistry

### **Example – p38 MAP kinase inhibitors**

(Bio Med Chem Lett 1998, 8, 3111-3116)



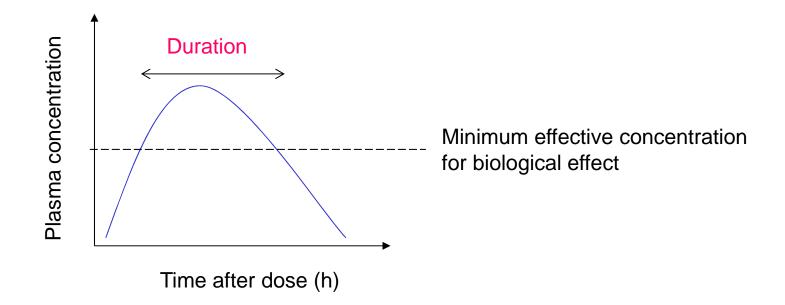
# Summary, what can you do about p450 inhibition?

- Reduce lipophilicity of molecules
- Increase steric hindrance around metal-binding heterocycles

And drink less grapefruit juice! (but eating grapefruit is ok!)



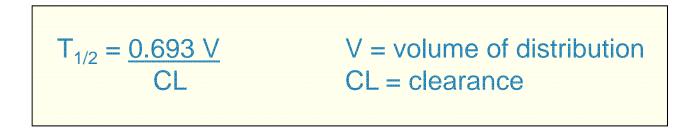
## **Distribution & Duration**


### From clearance to duration of action...

### What is "good" or "low" plasma exposure of a compound?

### How much for how long?

### **Depends on:**


- the affinity (potency) of the compound at the biological target
- what plasma concentration is required to give the desired biological effect
- how well the compound reaches the tissue or biological target from plasma



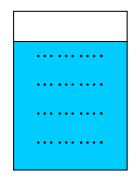
## How to increase half life (T<sub>1/2</sub>)

The elimination half life of a compound is determined by two factors

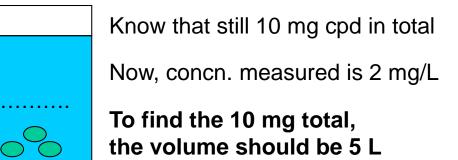
- Volume of distribution (theoretical volume into which a drug distributes)
- Clearance (the volume cleared of drug per unit time)



Half life in plasma can be increased by:


- increasing V, or
- decreasing CL

## **Volume of Distribution**


- Not a real volume!
- A parameter relating the plasma drug conc to the total amount of drug in the body

Best way to understand this is an example:

Addition of a cpd to water:



10 mg added to 1L of water Concn. is 10 mg/L Addition of a cpd + Charcoal:

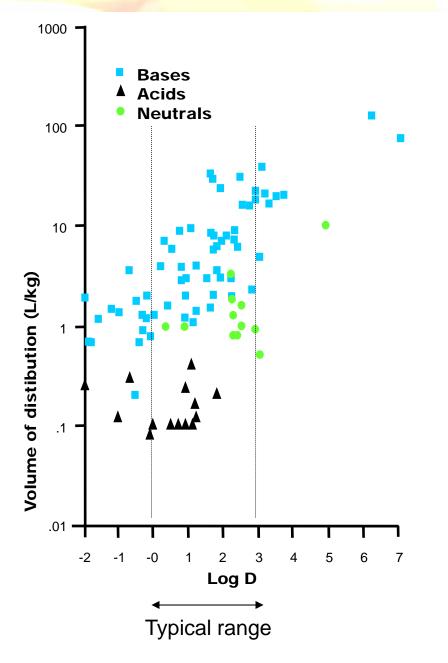


The cpd appears more dilute than anticipated - as it has distributed to other compartments!

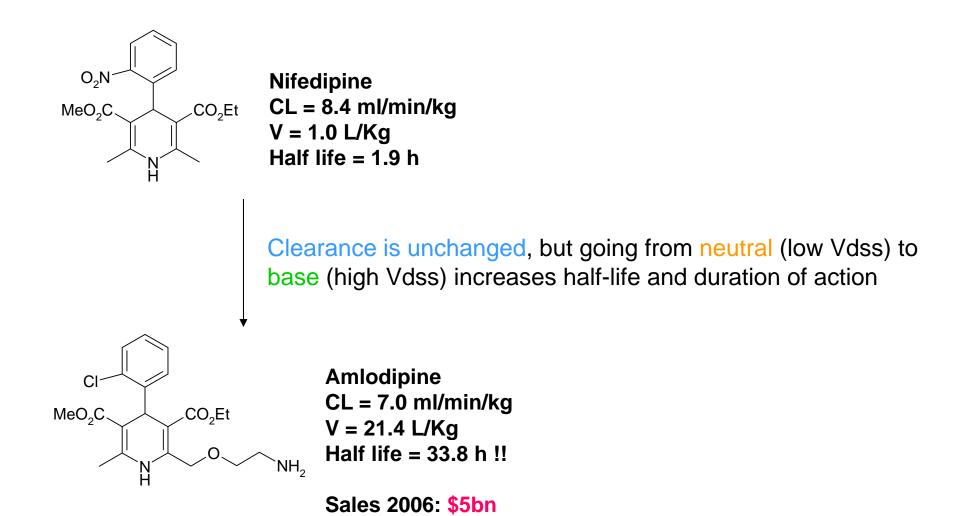
In real life, we know the total drug administered (i.v. dose), and measure plasma concn.

It follows that the major determinant of V<sub>d</sub> is how well a drug partitions from plasma into other compartments - not charcoal (!), but into tissues such as liver, muscle, heart, fat

A drug that partitions well will have a high  $V_d$  as less will remain in the plasma A drug that partitions poorly will have a low  $V_d$  as it will be retained in the plasma

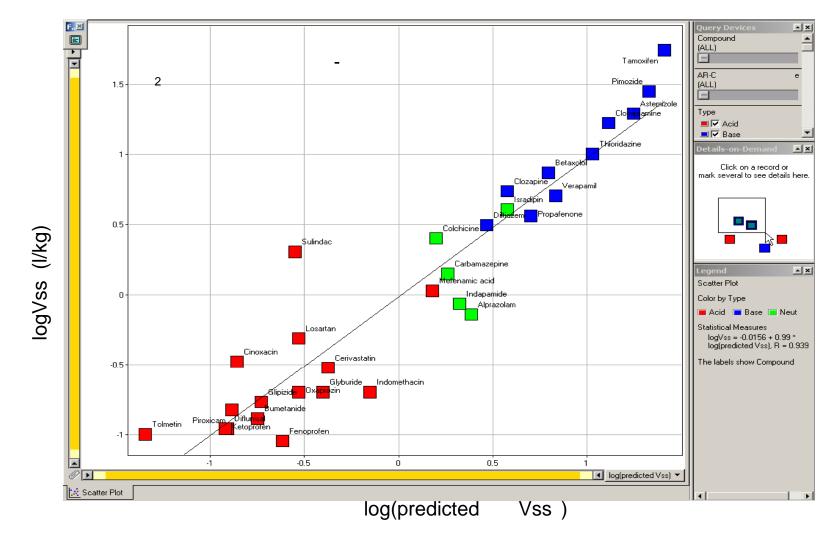

### What factors govern volume of distribution?

### Volume of distribution is also physical chemistry


Influenced by:

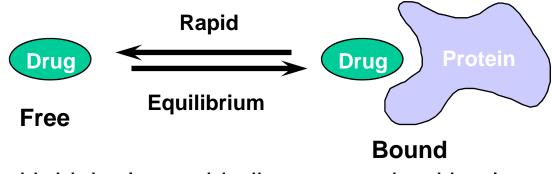
- pKa (tissue pH ~6.5 is slightly lower than plasma ~7.4)
  - generally bases > neutrals > acids
- Lipophilicity (tissue is generally lipophilic)
  - increase logD, increase Vdss
- Plasma protein binding (unbound drug free to cross membranes)
  - increase PPB, decrease Vdss

### **Volume of Distribution correlates with LogD**




### Volume of distribution can be modified




### **Volume of distribution can be predicted**

Equations which combine lipophilicity, PPB and pKa give good predictions of Vdss. See *J Med Chem* 2004, 47, 1242-1250



## **Plasma Protein Binding**

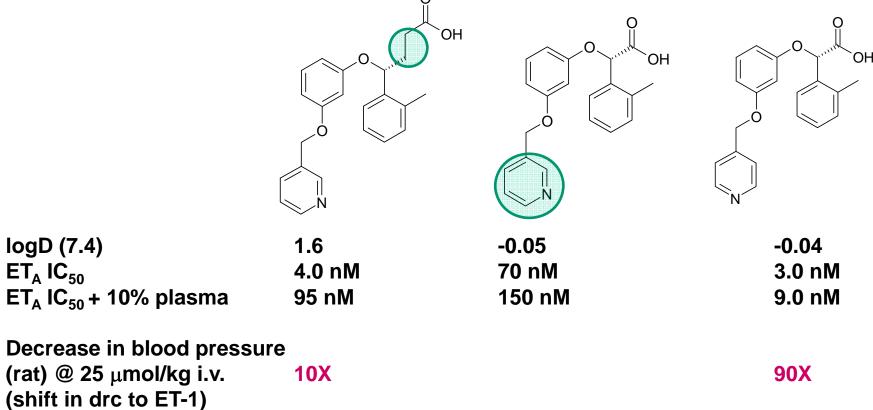
### PPB has a big impact on Vdss:



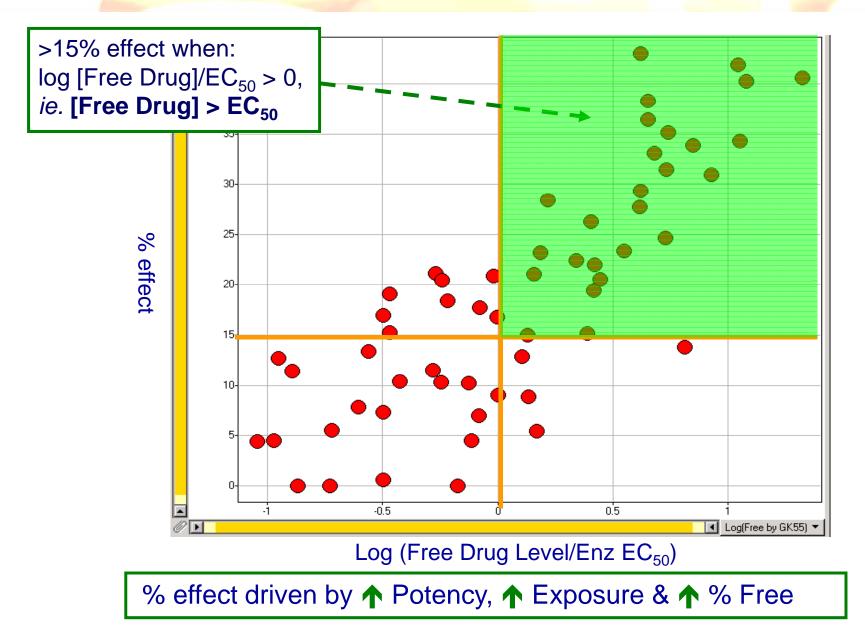
• Compounds with high plasma binding are retained in plasma

| 0-50% bound | = negligible | Low lipophilicity  |
|-------------|--------------|--------------------|
| 50-90%      | = moderate   |                    |
| 90-99%      | = high       |                    |
| >99%        | = very high  | High lipophilicity |

- Usually consider binding to albumin which is lipophilic & slightly basic, hence acids tend to have very high PPB, bases less so
- NB:- it is the %free or fraction unbound (fu) that matters The difference between 99.9% bound and 99.0% (10-fold) is greater than the difference between 90% and 50% (5-fold).


## **Impact of Protein Binding**

- PPB also has a big impact on in vivo efficacy
- Unbound / 'free' levels determine in-vivo efficacy
- Protein Binding too high can lead to lack of efficacy in cells, whole blood or in vivo:


Example:

Reducing PPB in a series of acidic endothelin  $ET_A$  receptor antagonists





### **PKPD Relationship**



### So now you can predict in vivo activity!

- Imagine you are in the project team using the model on the slide before.
- You have two compounds, but which is the best?

|                            | A     | В     |
|----------------------------|-------|-------|
| EC50                       | 0.02  | 0.07  |
| PPB                        | 99.7% | 98%   |
| Oral Cmax                  | 2.0uM | 4.5uM |
| Predicted in vivo activity | ?     | ?     |