

A New Age for coal with Carbon Capture and Storage(CCS)

Organized by SCI's Science and Enetrprise and Process Engineering Groups

From clean coal power plants to the zero emissions power plants: 10 years of experiences of ENEL

Giancarlo Benelli

Institute of Materials, Minerals and Mining - London United Kingdom November, 7 th, 2013

Outline

- Enel's profile
- Enel's fuel mix
- Sulcis: Circulating Fluidized Bed Combustor
- Torrevaldaliga : coal power plant
- Improvement of efficiency and emissions of power plants fleet
- ENEL Group: Initiatives on CCS towards zero emissions
- Results in emissions reduction by power plants
- Final remarks

Enel today An International, integrated energy operator

Presence in:

40 countries

Installed capacity:

97.839 MW

Annual output:

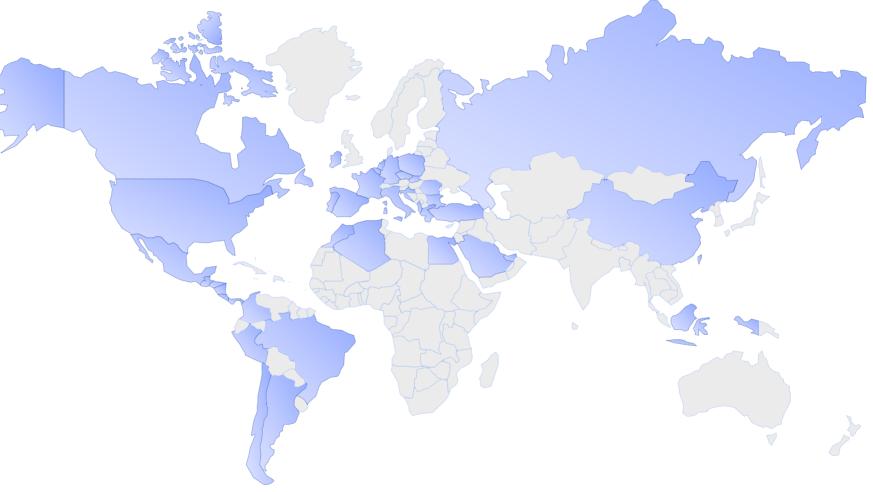
295,7 TWh

EBITDA:

16,7 bln €

Customers:

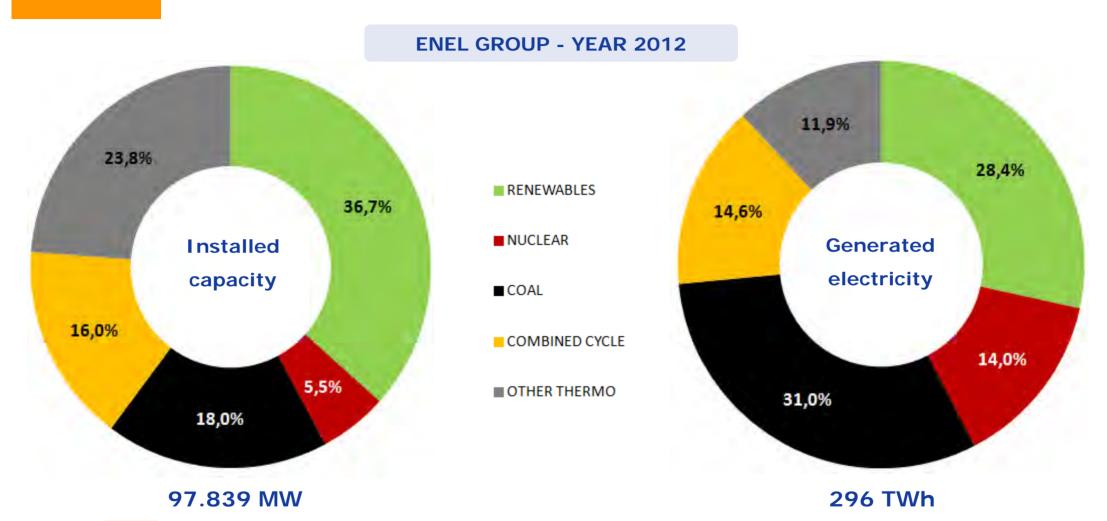
60,5 million


Employees:

73.702

CAPEX 2013-2017:

€27 billion


Data updated @ 31/12/2012

1st utility in Italy, 2nd largest in Europe by installed capacity Present throughout the entire electricity and natural gas value chain

Enel today An international, integrated energy operator

Although the importance of renewable energies is increasing both in terms of installed capacity and generated energy, conventional generation will continue to play a key role at least in the next decades

Power generation systems retrofit

Sulcis 2 CFB on old coal unit (240 MW)

Main project data

 Gross power output (MWe) 	350
--	-----

 Net efficiency 40%

565°C SH Steam temperature

580°C RH Steam temperature

• Fuel (20% sulcis(*) 80% south african coal)

Emission SO2/NOx/Particulate
 200(♠)/200/30 (mg/Nm3)

Ashes to coal mine

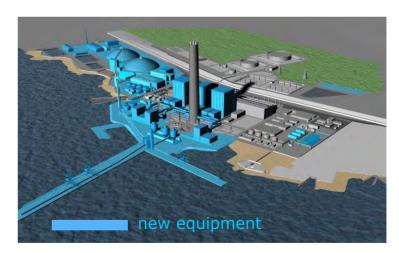
Biomass co-firing system since 2007 (8÷15 %)

• 1° start-up July 4th 2005 Commercial operation May 2006

(♣) Sulcis coal: 6% S - 17% ash -38% volatile

(3) $SO_2 = 200 \text{ mg/Nm}^3 \text{ with } 0\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{ mg/Nm}^3 \text{ with } 20\% \text{ of sulcis coal } - 400 \text{$

Torrevaldaliga Nord power plant: Enel's best practice


HIGH EFFICIENCY POWER PLANT

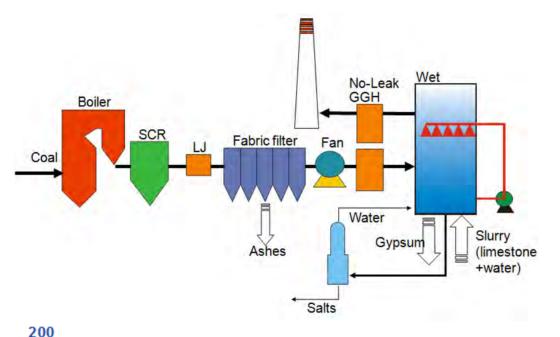
•	Net efficiency	~ 45 %
•	Superheater steam outlet temperature	604 °C
•	Reheater steam outlet temperature	612 °C
•	Feedwater and condensate preheater station	7
•	Condenser Back pressure	0.042 bar

Yesterday: 4 fuel oil units, 2640 MW

Units shut-down in 2006

Today: 3 coal units, 1980 MW

Commercial operation:

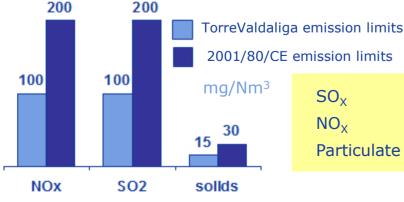

- Unit 4 January 2008
- Unit 3 August 2008
- Unit 2 August 2010

Torrevaldaliga coal power plant

Emission control technology state-of-the art

LOW EMISSION FLUE GAS TREATMENT LINE

NOx

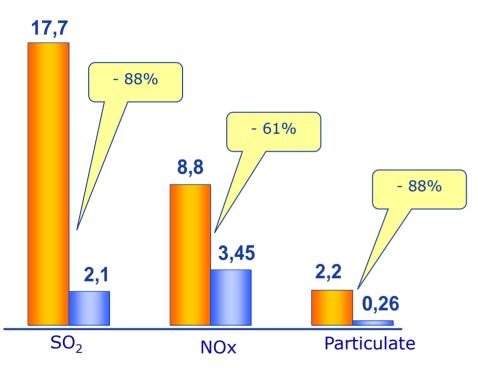

- Advanced combustion system
- High dust Selective Catalytic Reduction (SCR)
- Urea to ammonia Plant (Ammogen)

Particulate

- Fabric Filter
- Particulate removal efficiency > 99%

SOx

- Gas Gas Heater (GGH) zero-leakeage
- Wet Flue Gas DeSOx (FGD) limestone-gypsum
- SOx removal efficiency > 97%


SO_v NO_{Y}

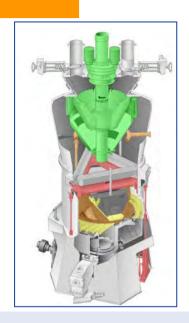
Particulate

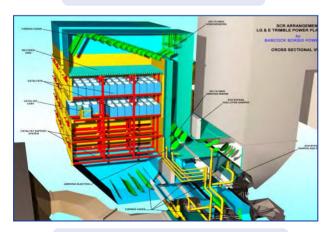
- \leq 100 mg/Nm³ on hourly basis and 2100 t/y (\sim 50 mg/Nm³ in base load)
- ≤ 100 mg/Nm³ on hourly basis and 3450 t/y (~ 85 mg/Nm³ in base load)
- \leq 15 mg/Nm³ on hourly basis and 260 t/y (\sim 6 mg/Nm³ in base load)

Torrevaldaliga coal power plant

Emission control technology state-of-the art

4 fuel oil units

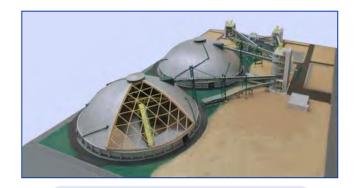




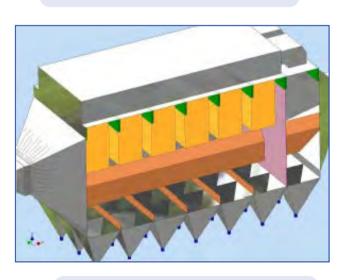
Improving efficiency and emissions of coal units

Retrofit of the Brindisi Sud power plant

Mill upgrading



SCR revamping



Brindisi Sud PP 4 x 660 MWe PC units

- Opposite fired boilers
- Low-NOx burners + OFA
- Supercritical, once through
- SH outlet temperature 538°C
- RH outlet temperature 540°C

New coal dome erection

ESP to Fabric Filter conversion

Improving efficiency and emissions of coal units

Fabric filters today running in Enel's Italian fleet

Plant	Capacity (MWe)	FF type	Installation	Supplier	Year	Bag Lenght [m]	Comp.	Emissions guarantees [mg/Nm3] (°)	Expected FF Emiss. in Operation [mg/Nm3]
Fusina 1&2	2 x 160	PJ, HP/LV	Conversion	TMK	1999	8,5	2	<30	<15
Genova 6	160	PJ, HP/LV	Conversion	TMK	2003	9	4	<30	<15
Sulcis 2 (*)	340	PJ, HP/LV	New (**)	Aster	2005	8,5	16	<25	<15
Torrevald. 1÷3	3 x 660	PJ, HP/LV	New (**)	TMK	2005	8	16	<10	<9
Brindisi S.# 3&4	2 x 660	PJ, HP/LV	Conversion	TMK	2010-12	8	4	<20	<10
(*) CFB Boiler	(**) Over the o	(°) hourly bas	sis						

- "Conversion" means "transformation" from an electrostatic precipitator to a fabric filter by using the existing casing.
- Acronyms: PJ pulse jet; HP/LV high pressure low volume type; TMK Termokimik spa Torrevald.: Torrevaldaliga North power plant.

Improving efficiency and emissions of coal units

Fabric filters today running in Russia and South America

Reftinskaya Power Plant (RUS)

Plant	Country	Capacity (MWe)	FF type	Installation	Supplier	Year	Bag Lenght [m]	Comp.	Emissions guarantees [mg/Nm3]	Expected FF Emiss. in Operation [mg/Nm3]
BOCAMINA II	Chile	350	PJ, HP/LV	New	Slavex	2012	6,5	20	<30	<15
Reftinskaya 5	Russia	300	PJ, IP/IV	Conversion	ALSTOM	2013	8	4	<50	<20
Reftinskaya 7	Russia	500	PJ, HP/LV	Conversion	Clyde Bergmann	2014 (°)	8,5	16	<50	<20
Reftinskaya 4	Russia	300	PJ, IP/IV	Conversion	ALSTOM	2015 (°)	8	4	<50	<20

(°) Expected date / schedule to be confirmed.

Filters in Russia will be particularly challenging in terms of operation and maintenance considering the very high dust content of the coals (up to 40%)

Other coal retrofit projects under evaluation

PLANT	FUEL	Location	RETROFIT TARGET	
Novaky (2x110MWe)	Lignite	Slovacchia	NOx reduction	
Litoral (2x580MWe)	Bituminous coal	Spain	NOx reduction	
Alcudia (2x130MWe)	Antracite	Spain	NOx reduction	
As Pontes (4x365MWe)	Bituminous coal	Spain	NOx reduction	

More than 3000MWe coal fired units under evaluation

ENEL Group: R&D towards zero emissions plants

Carbon Capture & Storage : Experiences matured

ENEL Group, since 2006, decided to take the lead in the development of CCS technologies in coal fired plants .

ENEL Group has developed several projects and pursues the development knowledge of technology options for CCS:

- Post-combustion CCS technology (pilot scale and power units feasibility)
- Oxy-Coal combustion atmospheric technology: (projects in Italy and Spain)
- Oxy -Coal combustion pressurized (Pilot project in Italy)
- Pre-combustion CCS technology : Electric Power from Hydrogen
- Algae cultivation facility to trap combustion gases: Pilot in Spain
- calcium carbonate looping pilot plant 1.7 Mw (Spain)
- Pre-Feasibility study for application of post combustion capture technologies to coal fired plant in China (SINO-ITALY agreement)

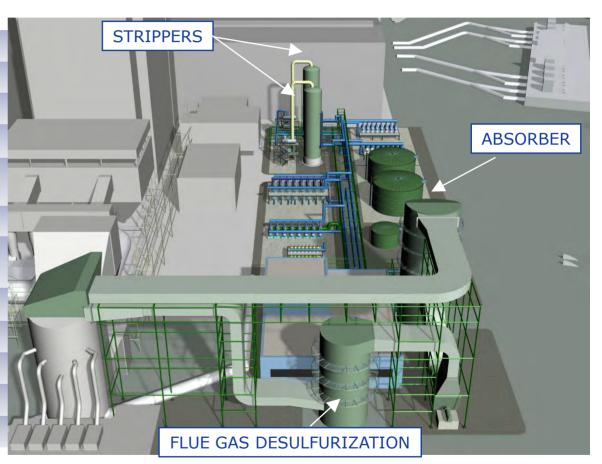
CCS: Post-combustion Carbon Capture technology

CO2 capture pilot plant

Operation: since June 2010

CCS: Post-combustion Carbon Capture technology

CO2 capture pilot plant :R&D activities


- Operational experience with base solvent (MEA 20%- 30%+ inhibitors)
 - Assessment of the MEA absorption technology: (reliability, environmental impact, power consumption and capture performance)
 - Definition of operating procedures
 - Cost evaluation at different operating conditions for retrofit application.
 - Flue gas composition: CO2 stream and emissions
- Testing of advanced solvents and inhibitors
 - An experimental program to test some advanced solvents and inhibitors has been set up with the aim to reduce power consumption, limit solvent degradation and improve environmental performances.
 - The pilot plant is flexible enough to allow the test of different kind of innovative liquid solvents. Enel is available to discuss with developers the terms for testing them.

CCS: Post-combustion Carbon Capture technology

Large scale CCS: Porto Tolle feasibility study

Type of Project	Retrofit
Power generation	660 MWe
Primary fuel	Bituminous coal
Secondary fuel	Biomass
Power Generation Tech	USC-PC
% of flue gas treated	40%
CO ₂ Capture Tech	Post Combustion Capture with Amine
Stored CO ₂	1.000.000 ton CO ₂ /y
CO ₂ Capture rate	90%
CO ₂ Storage solution	Deep saline aquifer
Storage location	North Adriatic Sea
CO ₂ value chain	Pure storage

CCS: Post-combustion Carbon Capture technology

MOST-IMELS -ENEL Cooperation Agreement CCS - CHINA Phase 1

Power Station Feature

Power Plant: TONG CHUAN

Unit Capacity: 2X600MW

Construction Year: 2007-2008

Total Capacity: 1200MWe

Power plant surface

Fuel: SHAANXI Coal

Cycle efficiency 92.5%

•Max load: 637 MWe

Steam Generator: sub-critical

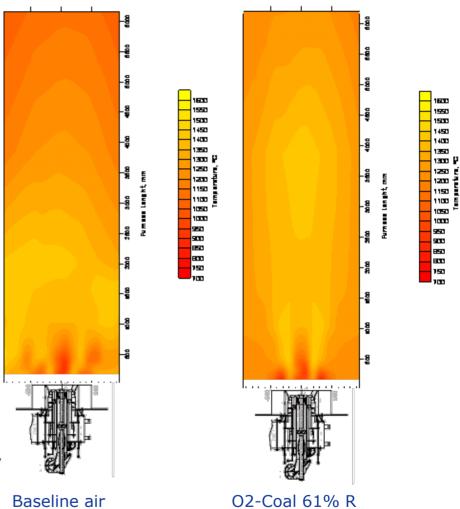
Steam rate: 2070(T/h)

Steam Pressure(Max): 16.67Mpa

Steam temperature 538 °C

Steam Turbine: 3 Stages

Condenser: Air cool



Oxy-Coal combustion atmospheric technology

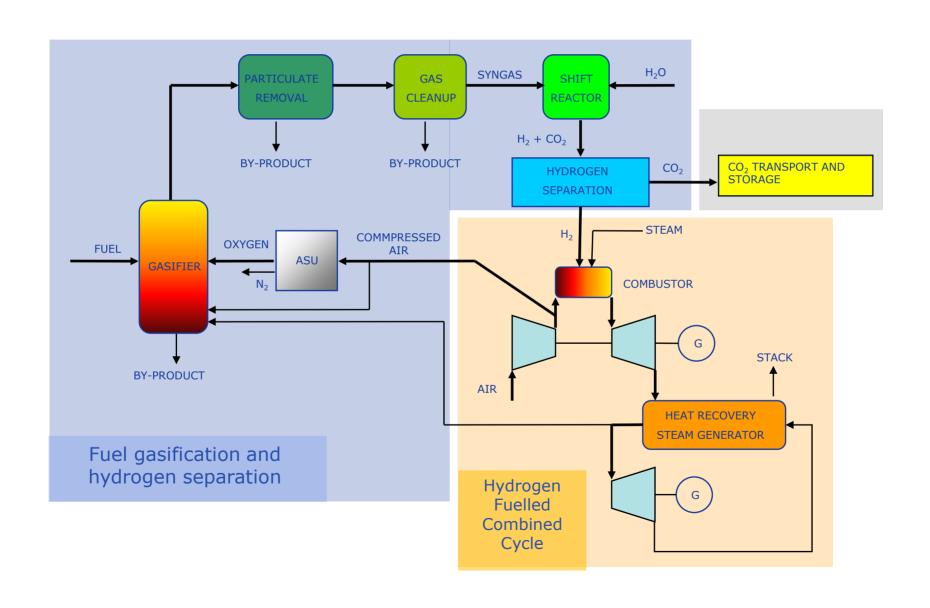
Livorno 3 MW combustion facility

- 3 MW combustion test facility at Enel's Livorno labs was modified to oxygen operation
- Oxy-coal atmospheric combustion tests were successfully performed with different flue gas recirculation ratios
- Results of the first experimental campaigns provided elements about feasibility of retrofit and combustion technology

Oxy -Coal combustion pressurized

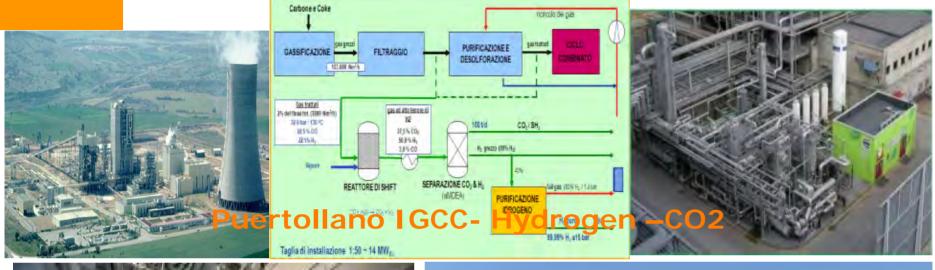
An Italian technology option for zero-emissions plants

- The combustion process: coal combustion with oxygen under pressurized conditions
- Project objective: development and demonstration on industrial scale a patented pressurized coal-combustion process with the purpose to make it possible CO2 capture and storage with energy penalties lower than those of other CCS technology options
- ☐ Timing: started on 2006
- Status: Feasibility study and costing for a Zero Emission the demo plant completed



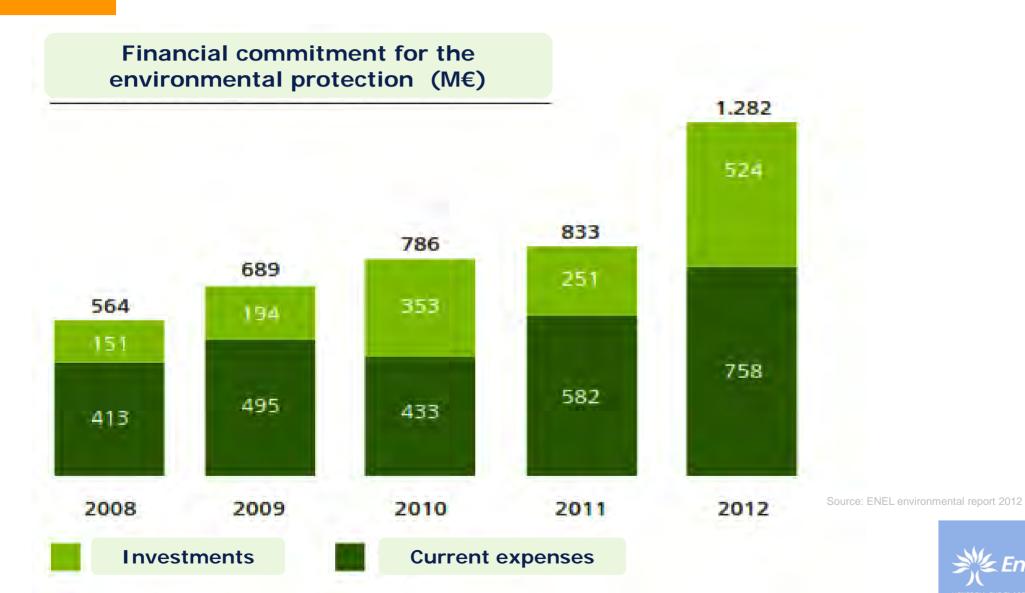
ITEA:5 MW facility

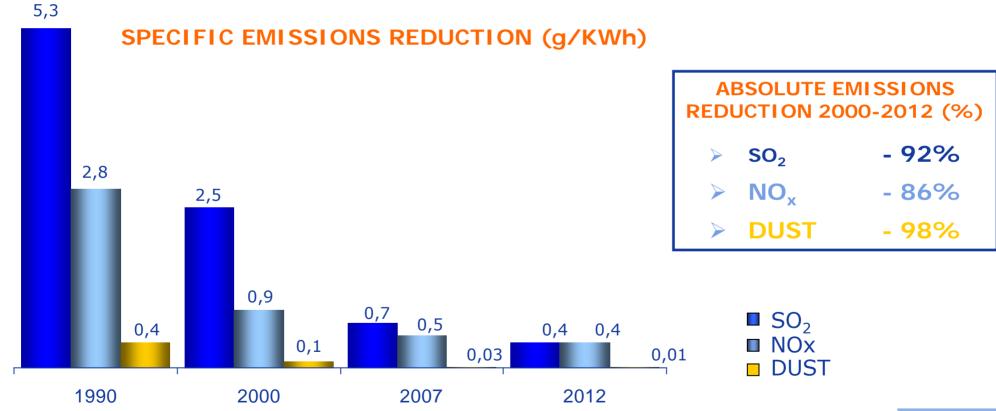
Pre-Combustion Carbon Capture Technology


Power from Hydrogen: Zero Emission IGCC

Pre-Combustion Carbon Capture Technology

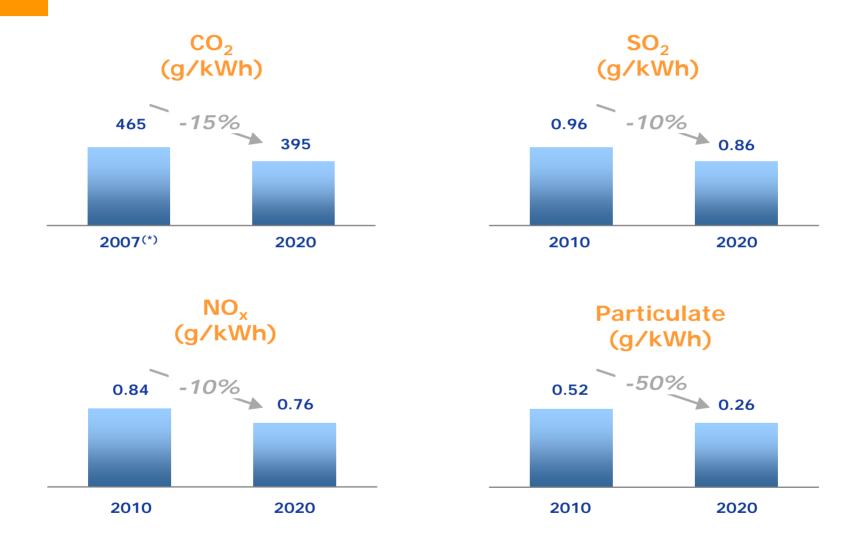
R&D on GCC-CCS (Puertollano+Fusina)




ENEL strategy implementation

A continuously growing commitment

Results of ENEL strategy implementation


Emission reduction from 1990 to 2012 – Italian fleet

Trend on reducing emissions

Future targets

^{*} Target set in 2007 being the year before Emission Trading System Phase II (2008-2012)

Final remarks

- ENEL is strongly committed to reduce emissions from fossil fuel power plants pursuing a strategy based on:
 - High efficiency technologies
 - Low NOx combustion systems coupled with SCR (only for coal)
 - FF progressively replacing ESP in coal plants
 - Operational excellence
 - R&D support to improve O&M processes and select BAT
 - Continuous financial commitment
 - R&D towards zero emissions
- □ The strategy implementation leaded to a massive emission reduction in the last years (-92% SO₂, -86% NOx -98% dust in Italy from 1990 to 2012)
- New projects will be launched in Countries where ENEL operates for further reducing the environmental impact of thermoelectric power plants
- ENEL is available to share lesson learnt and to support whom interested to the best practice on fossil fuel power plants

THE REAL REVOLUTION IS NOT TO CHANGE THE WORLD

RATHER THAN CHANGING THE PLANET, WE HAVE ALWAYS PREFERRED TO CHANGE OURSELVES

