A market overview on bio-based fuels and chemicals

Phil Webster

Processing Lignocellulosic Biomass Conference CPI, Wilton Centre 8 November 2012

With thanks to Laurie Guillodo

Arthur D. Little Limited One Bedford Avenue London, WC1B 3AU

+44 (0)207 7660 200 www.adlittle.com

Bio-based fuels – Introduction

This presentation provides a market overview for bio-based fuels and chemicals

What are bio-based fuels and chemicals?

Why produce them from lignocellulose?

How are markets growing?

What are the challenges, and how can they be overcome?

Bio-based fuels – Definitions of biofuels

Three main types of feedstock are used to produce biofuels

First Generation" feedstocks Food components: Vegetable oil, sugar and grain and animal fats Mon-food biomass: Energy crops, waste biomass and agricultural arisings Image: Component in the image: Component in

This is what we mean by lignocellulosic biomass

Source: Arthur D. Little; Images © Centre for Sustainable Energy and The New York Times

A range of types of biofuel can be produced from these feedstocks – though not all have yet been commercialised _____

	Non-exhaustive				
	Feedstock			Fossil	
Types of biofuel	"First Generation" feedstocks	"Second Generation" feedstocks	"Third Generation" feedstocks	comparator	
Bioethanol	Distillation and fermentation of grain and sugar	Range of biological and		Petrol	
Biodiesel	Transesterification of vegetable oil	treatments	Extraction and processing of algal oil	Diesel	
Biogas	Anaerobic digestion	Natural gas			
Others	Dimethyl ether, biobutanol, furanics, hydrotreated vegetable oil, pure vegetable oil "advar			are often called nced biofuels"	
	Legend: Com	mercialised No	t fully ercialised	4	

Bio-based fuels – Market drivers for biofuels

The market for liquid transport biofuels is driven by regulatory incentives

1) Full compatibility in blends up to 5% of biofuel without vehicle engine modifications; in some cases up to 10% 2) Directive 2009/28/EC on renewable energy. 3) Renewable Transport Fuel Obligation, as described at http://www.dft.gov.uk/topics/sustainable/biofuels/rtfo/ November 2012

Bio-based fuels – Success stories

Some "first generation" biofuels produced from crop waste materials have been successful

"First generation" biofuels – success stories						
Waste vegetable oil	Biogas from sugar beet pulp					
 Argent Energy in Scotland produces biodiesel from: Old chip fat Rendered abbatoir waste Out of date packs of meat Some of this material would otherwise cost producers to dispose of 	 Sugar producers such as AB Sugar in the UK and Suiker Unie in the Netherlands use excess beet pulp in anaerobic digestion Methane can be supplied to the gas grid or used to generate heat and power 					

However, other types of biofuel – particularly those produced from oil crops and grain – are dependent on regulatory incentives

Sources: Arthur D. Little analysis; company websites

Bio-based fuels – Challenges for first generation biofuels

However, biofuels produced from virgin food crops have faced significant challenges and some negative PR in recent years

"First generation" biofuels from virgin food crops – challenges				
1	Demand for food is increasing			
	 Agricultural productivity has not greatly improved in some oil crops used for biofuels 			
Competition with food	Together, these factors have resulted in direct and indirect land use change, for meat production and growing palm oil			
	 Land clearance can mobilise soil carbon sinks in sensitive areas 			
2 Fluctuating crop prices	Crop prices have fluctuated considerably in recent years relative to the price of oil, with changes mainly due to poor harvests in some regions			
	As a result, some first generation plants are operating below capacity			
3 Dependency on	Some biofuels are reliant on regulatory incentives to be economically viable			
regulation	These incentives are often changing!			
4 GHG reduction benefits	Greenhouse gases emitted during manufacturing, transportation and use of biofuels			
Sources: Arthur D. Little, USDA				

Bio-based fuels – Advantages of using lignocellulosic biomass

biofuels, though these do not currently address all the implications of biofuel production 1 Competition with food and indirect land use change Measures are under development to improve the sustainability of biofuel production Sustainability implications of biofuels Measures to improve sustainability Direct land use change Users of biomass and food crops for fuels now need to **Environmental** demonstrate: Maximising water use efficiency issues A minimum GHG saving _ Maintaining biodiversity That crop feedstocks are not being sourced from _ Fair land ownership land of high biodiversity value or carbon stock¹ Social and community Labour rights However, these basic criteria do not take into account issues wider sustainability issues at point of production Effective agricultural extension Programmes such as Biopact and initiatives such as Minimising transportation of the NTA 8080 standard are under development, but Greenhouse bulk biomass and finished fuels are frameworks, rather than requirements gas emissions Mobilisation of carbon sinks

Indirect land use change is being addressed – in part – through sustainability criteria for

1) <u>http://www.decc.gov.uk/en/content/cms/meeting_energy/bioenergy/sustainability/sustainability.aspx; http://www.dft.gov.uk/ topics/sustainable/biofuels/rtfo/accessed November 2012.</u>

Bio-based fuels – Fluctuations in crop prices

Crop prices for some of the main agricultural commodities – especially wheat – have fluctuated considerably in the last four years

Source: http://www.indexmundi.com/commodities/ accessed November 2012

3

Bio-based fuels – Changes in regulation

The EC recently announced that it is considering capping the amount of biofuels produced from virgin food crops that can contribute towards renewable energy targets

Dependency on regulation

"We must invest in biofuels that achieve real emission cuts and do not compete with food"

"We are of course not closing down first generation biofuels, but we are sending a clear signal that future increases in biofuels must come from advanced biofuels"

European Commission announcement, 17th October 2012

This suggests that lignocellulosic biomass is a key component of Europe's future transport fuels agenda

Source: European Commission press release, 17th October 2012. available at: <u>http://ec.europa.eu/commission_2010-2014/hedegaard/headlines/news/2012-10-17_01_en.htm</u>

Bio-based fuels - Advantages of using lignocellulosic biomass

Biofuels produced from lignocellulose bring four main advantages

OECD / IEA, 2008. From first to second generation biofuel technologies: an overview of current industry and RD&D activities; Arthur D. Little analysis 1) Generally on a par with ethanol produced from sugar cane in Brazil.

Bio-based fuels – Market forecast for advanced biofuels

The market for advanced biofuels – which includes those produced from lignocellulose – is

projected to expand rapidly, though there have been delays in commercialising them

Source: Technology Roadmap - Biofuels for Transport © OECD/IEA, 2011. 1) Advanced biofuels includes those produced from lignocellulosic biomass, hydrotreated vegetable oil, and biofuels produced from algae

Bio-based fuels – Biological and thermochemical production routes

Both biological and thermochemical routes can be used to produce biofuels from lignocellulose...

Bio-based fuels – Biological and thermochemical production routes

... both of which are under late stage commercial development

Source: Arthur D. Little, adapted from Van Thurjil, 2003; World Economic Forum, 2010. The future of industrial biorefineries

Bio-based fuels – Biological production routes

According to company announcements, at least 500 million litres of production capacity are reportedly due to come online using biological routes within the next 2 years_____

Source: Arthur D. Little analysis of company announcements

Bio-based fuels – Thermochemical production routes

Some thermochemical plants are also about to begin operation – though some close-tomarket opportunities have been stopped

Source: Arthur D. Little analysis of company announcements

Bio-based fuels – Recent setbacks

Some producers closest to commercialisation using thermochemical routes have suffered recent setbacks, run out of capital and filed for bankruptcy

Biofuels from lignocellulose: Recent setbacks						
	Range Fuels	Choren				
Company and technology	 Syngas to ethanol and methanol Wood chips 	 Gasification followed by Fischer Tropsch biomass-to-liquids Wood chips and agricultural waste 				
Problems	 Process found not to be economically viable Encountered cash flow problems 	Delays in scale-up and commissioning of the gasifier				

The US Government has reduced its mandate for second generation biofuels from 500 million gallons to 8.65 million gallons¹

Sources: Bloomberg, Biofuels Digest, company websites. 1) Congressional Research Service, January 2012. Meeting the Renewable Fuel Standard (RFS) Mandate for Cellulosic Biofuels. Available at: <u>http://www.fas.org/sgp/crs/misc/R41106.pdf</u>

Bio-based fuels - Integration of bio-based chemicals

This suggests that the basic economics of biofuels from lignocellulose are a major issue – and one which could be improved by producing biofuels in an integrated biorefinery setting

Biorefineries can also be used to produce bio-based chemicals from lignocellulosic biomass – though they have not yet been commercialised

* Non-exhaustive. 1) IEA Bioenergy, 2012. Bio-based chemicals – value added products from biorefineries, citing an economic study of 12 biorefineries at Wageningen University

Bio-based chemicals – Main categories

Bio-based chemicals produced from lignocellulose can be classified into three main types

19

Bio-based chemicals – Market drivers for bio-based chemicals

The market for these bio-based chemicals is driven by pressure from customers and consumers, rather than by regulation

Regulation is not a major driver for bio-based chemicals – but in some circumstances it can act as a restraint

Bio-based chemicals – Types of bio-based chemical

There is a vast range of bio-based platform chemicals and an even bigger range of production routes

Bio-based chemicals - Market forecast

Of this wide range of alternatives, production capacity is projected to expand for certain platform chemicals such as ethylene and methanol

If both first and second generation feedstocks are used, bio-based chemicals could account for up to 17% of the UK chemical market¹

Source: Adapted from ICIS / Nexant, 2012. Bio-based chemicals on the fast track to commercialisation. 1) Source: BERR / Arthur D. Little, 2009. Quantitative Modelling of Industrial Biotechnology and 22 Renewable Chemicals. Figures from the "Knock on wood" scenario, which assumes that second generation biofuels will be successfully commercialised

Bio-based chemicals – Ethylene as an example

Bioethylene is one example of where synergies between second generation bioethanol production and the production of bio-based chemicals may lie in the future

Sources: Arthur D. Little analysis; IEA Bioenergy, 2012. Bio-based chemicals - value added products from biorefineries

Bio-based chemicals – Challenges and solutions

Across both bio-based fuels and chemicals there are considerable challenges – but none which we believe cannot be overcome

	Summary: Challenges and solutions							
	Agricultural production	Transportation and logistics	Equipment and process technology	Producers of I and ch	bio-based fuels emicals			
enges	Improving yields of biofuel	Obtaining large quantities	Handling heterogeneous feedstocks	Technology barriers at scale-up	Rise of competing fuel technologies			
Challe	crops	biomass	Fragmented processing routes and end markets for bio-based chemicals					
Solutions	 Target yield improvements for non- food purposes Connect with producers Optimise side-streams 	 Use accreditation bodies where possible Help develop sustainability standards Look for supply chain synergies 	Find designs which can handle lower quality, variable feedstocks	 Partner with tech suppliers Pursue biorefineries 	 Aim for higher value chemicals (e.g. polymers) Pursue specialty fuels markets (e.g. aviation) 			

Above all, it is vital to build the business case for any investment in this area to ensure you can make any money out of it

Arthur D. Little is the oldest management consulting firm in the world and assists clients with complex assignments in a wide range of industries

Arthur D. Little, founded in 1886, is a global leader in management consultancy, linking strategy, innovation and technology with deep industry knowledge. We offer our clients sustainable solutions to their most complex business problems.

Arthur D. Little has a collaborative client engagement style, exceptional people and a firmwide commitment to quality and integrity.

Visit us at www.adlittle.com

Contact us at

Arthur D. Little Limited One Bedford Avenue London, WC1B 3AU

webster.philip@adlittle.com +44 (0) 7738 040 645

eagar.richard@adlittle.com +44 (0)7710 536 471