THE ROLE OF TECHNICAL TEXTILES IN FIRE PROTECTION

Professor Richard Horrocks

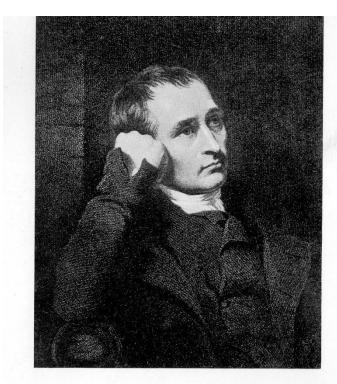
University of Bolton,

University of Bolton

Bolton, BL3 5AB, UK

SCI Levinstein Lecture 19th October 2016

"Most significant inventions that drove the textile industry in the 18th, 19th and 20th Centuries were invented within a 20 mile radius of Bolton !"

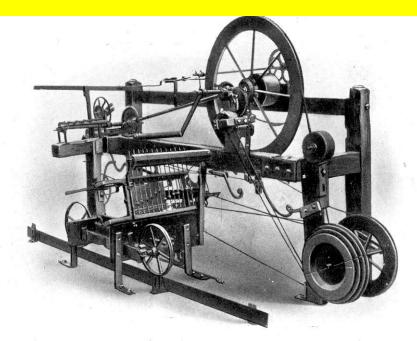

Bolton?

Textiles?

Technical Textiles?

Samuel Crompton?

(1753-1827)


Sam! Crompton

1753-1827.

Cotton mules were manufactured from ~1790 until the 1930s:

Fine spinning mule makers of Bolton:

Dobson and Barlow Richard Threlfall

CROMPTON'S SPINNING MULE. THE MACHINE IS THE PROPERTY OF DOBSON AND BARLOW, LTD.

Industrial Synergies

- Cotton textiles
- Engineering/machinery manufacture
- Chemicals
- Transport

All required "industrial textiles":

- Ropes
- Strappings/webbings
- Drive belts
- Filter fabrics
- Packaging (eg sackcloths)
- Industrial clothing

Timelines:

1750 – 18	50	1918-1939		1970s ·	- late 1990s	
Textile inventions plus factory system; Industrial growth/complexity		Post war boom Depression Nylon!		Patents expire Industry moves East: CHINA!		
Industria Before	al Textiles \rightarrow 1850 – 191		al Textiles (i 1945 – 197		g composites 1990s – pre	- 4
1750 Cottage Industry	Organic chemistry Viscose fibre Lancs Textile Industry matures		Synthetic fibre monopoly Consolidation of traditional textiles		Break up of "majors" Technical textiles!	

Technical Textile Industry in NW England

- One of largest in World
- ~£1.5 billion pa

2nd editions 2015 &2016

Technical textiles are present in most manufacturing supply chains:

- Construction
- Personal Protective Equipment (PPE)
- Chemical
- Automotive
 - Aerospace
 - Marine
 - Rail

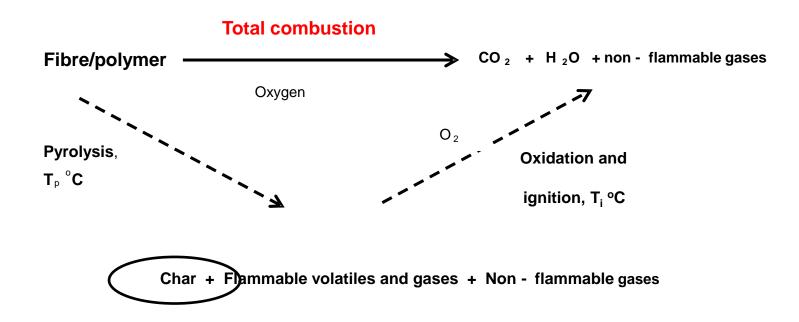
• Many require Fire and Heat Resistant properties

Major Fire & Heat Resistant Technical Textile Applications

- Contract and Domestic Furnishings
- Protective Clothing
- Transport
 - Aircraft
 - Ships
 - Trains

Driven by Fire Safety Regulation and/or legislation

Cars/coaches

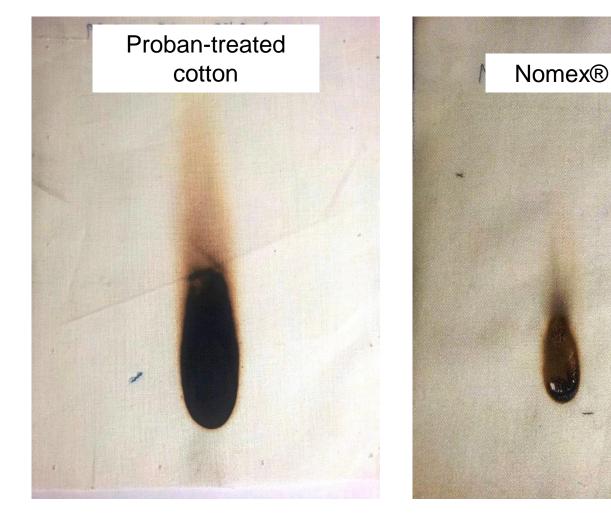

"9/11" - a textilefuelled fire?

Flammability of Textiles (& hence fire loads) are determined by:

- Ease of ignition
- Rate of burning
- Energy (heat) release rate
- Production of protective layer (char)
- Toxicity of fire gases
- Smoke evolution

Flammability of Textiles (& hence fire loads) are determined by:

- Ease of ignition
- Rate of burning
- Energy (heat) release rate
- Production of protective layer (char)
 - Toxicity of fire gases
 - Smoke evolution


Major Fire & Heat Resistant Technical Textile Applications

- Contract and Domestic Furnishings
- Protective Clothing
- Transport
 - Aircraft
 - Ships
 - Trains
 - Cars/coaches

Char formation: FR Cotton® vs Nomex®

BS5438: 10s ignition

Flame and heat resistant Fibres!

Char-forming Fire Retardant (FR) Fabrics for use upto 100°C continuously

Applications:

Typical fabrics/textiles:

- Protective clothing: eg workwear
- Barrier fabrics
- Furnishings & interior textiles

- FR cotton (eg Proban®, Pyrovatex®)
- FR wool (eg Zirpro®)
- FR viscose (eg Lenzing FR)
- FR acrylic (eg Kanecaron)

High Performance Fire & Heat Resistant (F&HR) fabrics for use above 150°C continuously

Applications:

Typical fabrics/textiles:

- High performance protective clothing: eg firefighters' kit
- Defence and emergency textiles
- High performance barrier composites: aerospace, surface vessels, transport

- Meta-aramids (eg Nomex®, Teijinconex®, Kermel ®)
- Para-aramids (eg Kevlar®, Twaron®)
- Arimid (eg P84®)
- Novoloid (eg Kynol®)
- PBI (eg PBI®)
- PBO (Zylon®)
- Semi-carbon (Panox®)
- Carbon
- Ceramics (eg glass, Nextel®)

Major F & HR Technical Textile Applications (1)

- Contract and Domestic Furnishings
- Protective Clothing
 - UK Health & Safety at Work Act 1947
 - EU PPE Directive 1989
 - Workwear/corporate wear
 - Industrial
 - Welding/molten metal
 - Off-shore
 - Wild-fire fighting
 - Defence wear

FR Corporate and work wear: *to be worn during the whole working period:*

- Comfortable
- relatively lightweight
- durable to multi-laundering

Durable to 200+ laundering cycles!!

Globally Compliant Flame retardant workwear

PROBAN® workwear is available worldwide with accreditations to give protection against heat, flame and electric arc even against the toughest standards:

PROTECTION AGAINST HEAT AND FLAME

Compliance	Relevant countries	
EN ISO 11612	International Standard.	
ISO 6942		
EN ISO 14116		
AS/NZS ISO 2801:2008	Australia	
CGSB 155.20	Canada	
NFPA 2112	USA	
ASTM F 1506	USA	
GOST ISO 11612-2014	Russia	
GOST 11209-85	Russia	
GOST R 12.4.297-2013	Russia	

PROTECTION AGAINST ELECTRIC ARC

Compliance	Relevant countries				
RWE Eurotest	Customer Specific				
IEC 614821	International Standard.				
NFPA 70E	USA				
AS/NZS 4836:2011	Australia				
GOST 12.4.234-2012	Russia				
 Comply with all hazard risk categories. Lightweight woven garments with >37cal/cm² (HRC 3) 320gsm knitted garments with 25 EBT (HRC3) 					

Major F & HR Technical Textile Applications (2)

- Contract and Domestic Furnishings
- Protective Clothing
 - UK Health & Safety at Work Act 1947
 - EU PPE Directive 1989
 - Workwear/corporate wear
 - Industrial
 - Welding/molten metal
 - Off-shore
 - Wild-fire fighting
 - Defence wear
 - Emergency Services' clothing systems
 - Air ambulance
 - Police
 - Firefighter

100 Years of Fabric Evolution

Firefighters' Clothing: A "System"

10.

Instrumented Manikin (eg DuPont Thermoman ®) for Testing Protective Clothing Fire Performance:

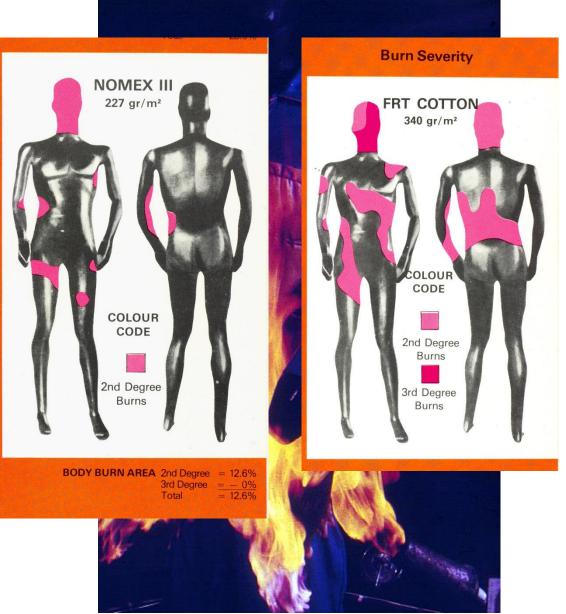
Flame source 84kWm⁻²

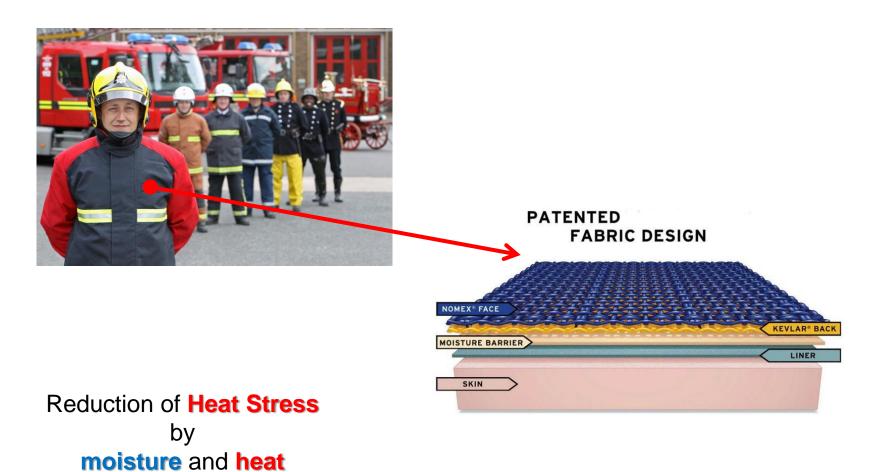
Manikin torso records areas experiencing 1st, 2nd & 3rd degree burns

(BS ISO 13506:2008)

Instrumented Manikin (eg DuPont Thermoman ®) for Testing Protective Clothing Fire Performance:

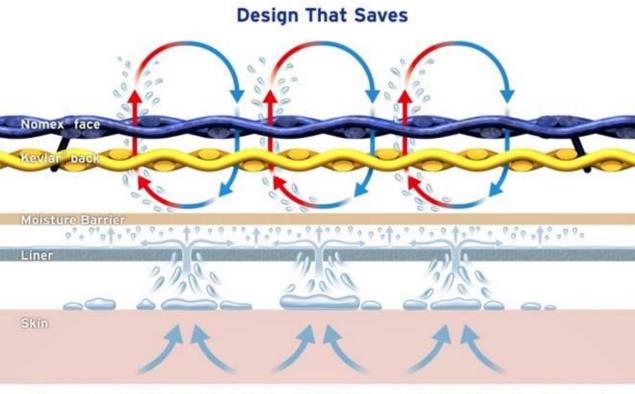
Flame source 84kWm⁻²


Manikin torso records areas experiencing 1st, 2nd & 3rd degree burns


Instrumented Manikin (eg DuPon Thermoman ®) for Testing Protective Clothing Fire Performance:

Flame source 84kWm⁻²

Manikin torso records areas experiencing 1st, 2nd & 3rd degree burns


2005 Positioning Fibres

transfer

HAINSWORTH TECHNOLOGY

Reducing Heat Stress

Open outershell layer optimises breathability, reducing the risk of heat stress

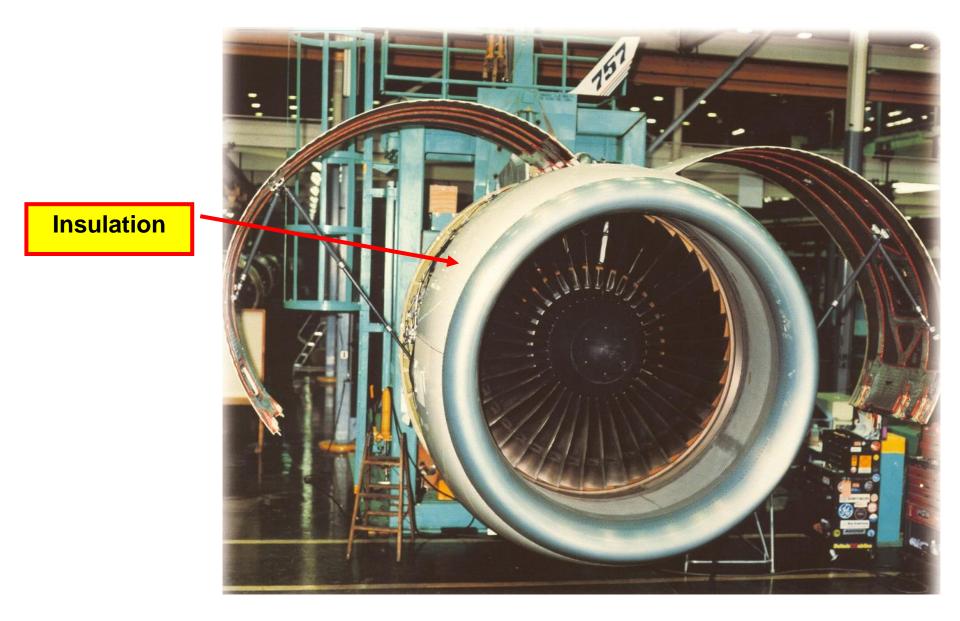
Major F & HR Technical Textile Applications (3)

Contract and Domestic Furnishings

Protective Clothing

- UK Health & Safety at Work Act 1947
- EU PPE Directive 1989
 - Workwear/corporate wear
 - Industrial
 - Welding/molten metal
 - Off-shore
 - Wild-fire fighting
 - Defence wear
 - Emergency Services' clothing systems
 - Air ambulance
 - Police
 - Firefighter
 - Specialist clothing
 - Motor sports

Major F & HR Technical Textile Applications (4)


- Contract and Domestic Furnishings
- Protective Clothing
- Transport
 - Aircraft
 - Ships
 - Trains
 - Cars/coaches

3M Nextel[™] Ceramic Textiles

Products for high temperature applications

Main
Structural
components(composites)
Internal walls, bulkheads,
floors
Seats

Engine insulation

C fibre structural composite ~ 50:50 fibre:resin

Air-frames

Airbus 380: the 25% Carbon-compositeframed aircraft for lightness; hence capacity and fuel efficiency

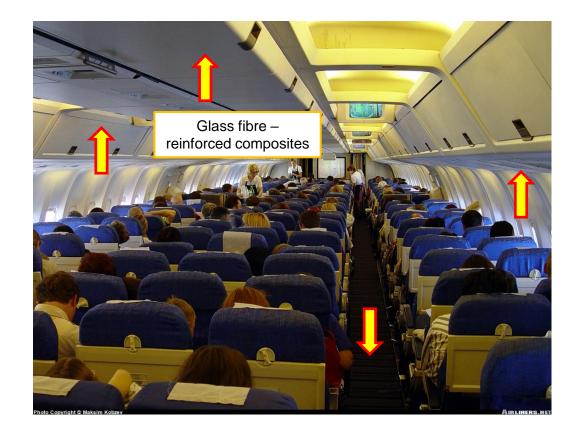
Air-frames

C-fibre prepregs and composites

A380 waste tank

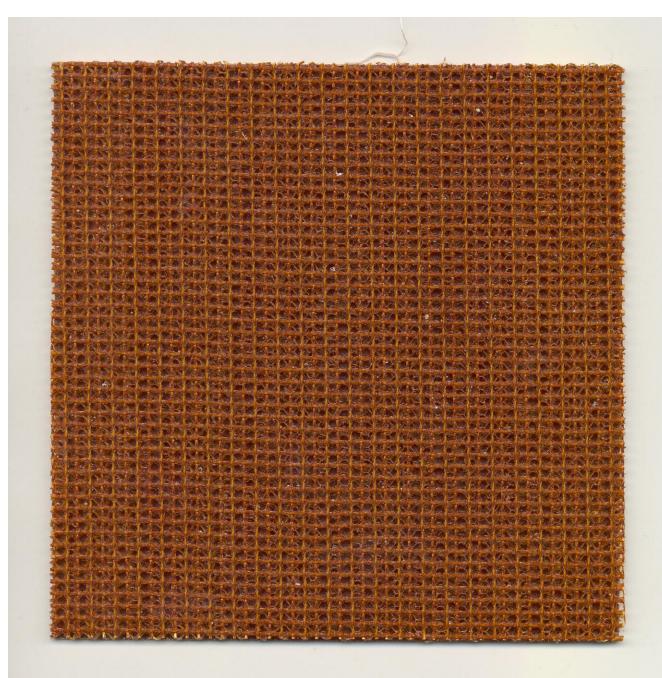
NEWS: 19/01/2004 - LOS ANGELES, CA, USA

HITCO Carbon Composites, Inc. (HITCO), an affiliate of SGL Carbon Group (NYSE: SGG - News), today celebrated the delivery of the first operational ship set of the carbon fiber tail structure parts for the vertical tail plane of the Airbus A380.


Aircraft Seatings & Interior Décor (FAR 25.853 (c))

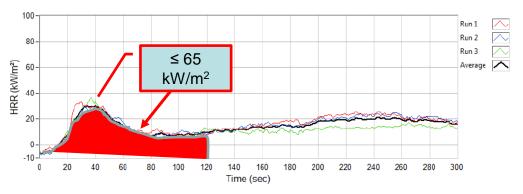
120 kW/m² for 2 minutes

All internal panels including external décor (walls, flooring, ceilings, etc.,) must pass the "OSU 65/65 test (FAR 25.853 Pt IV, App F)"!!



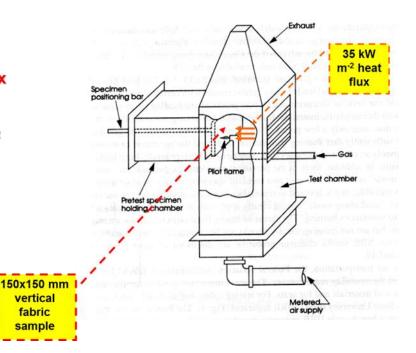
Woven or knitted fabric reinforced "honeycomb" panel for <u>walls</u>, <u>ceilings and</u> <u>floors</u>.

Eg. Glass fibre/phenolic


or

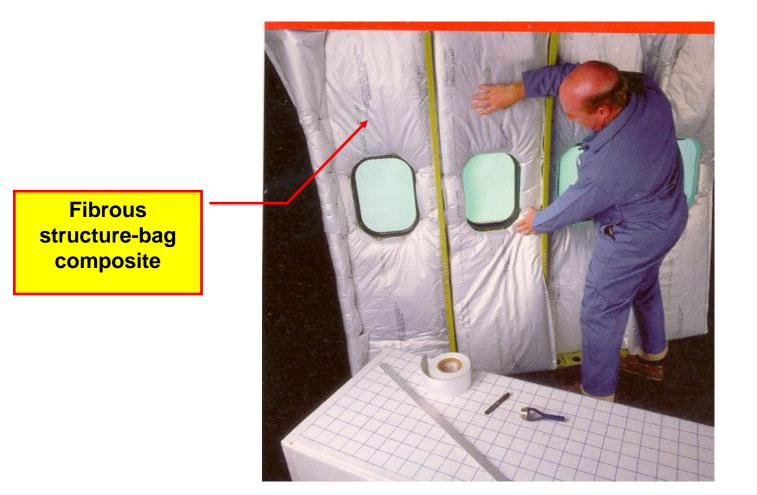
Aramid fibres/polyimide resin

Heat release rate test for cabin materials: "The OSU calorimeter test" (FAR 25.853 Pt IV, App F)

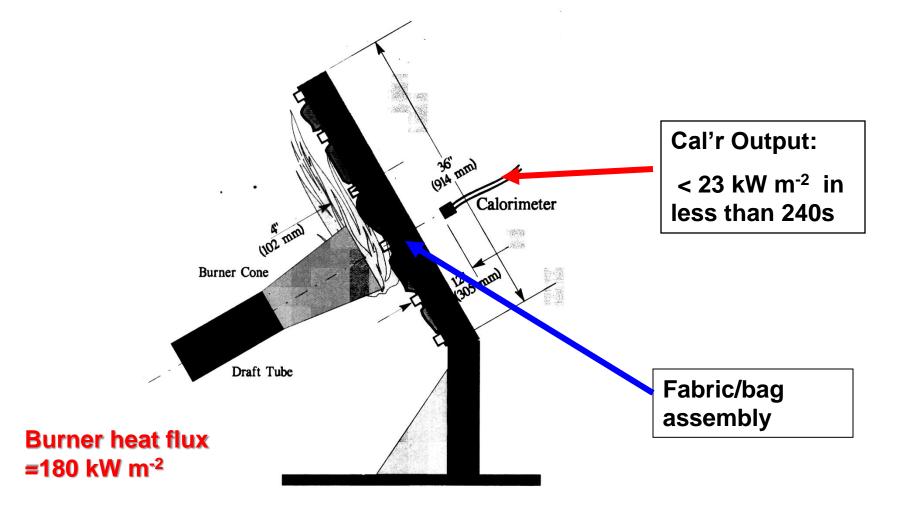


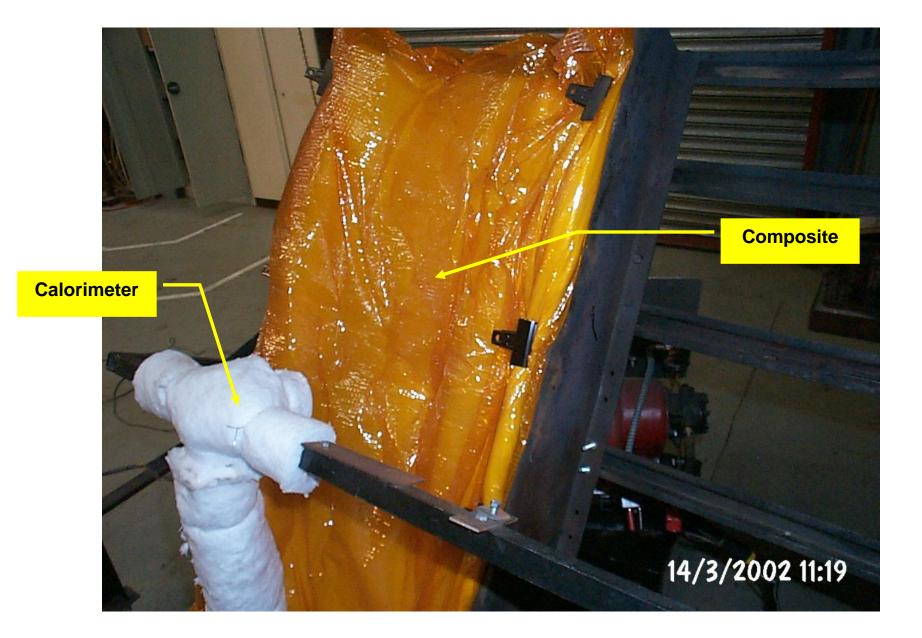
	Peak	Peak Time	2 min Total	Initial Baseline
Run	(kW/m²)	(sec)	(kW*min/m²)	(mV)
1	33.1	30	26.6	24.2
2	29.5	32	23.8	24.4
3	36.5	37	23.0	24.6
Average	33.0	33	24.5	24.4
Stdev	3.50		1.89	0.20

- Vertical specimen, 150 x 150 mm
 - Fixed Heat Flux: 35 kW m⁻²
 - Gas flame ignition of volatiles

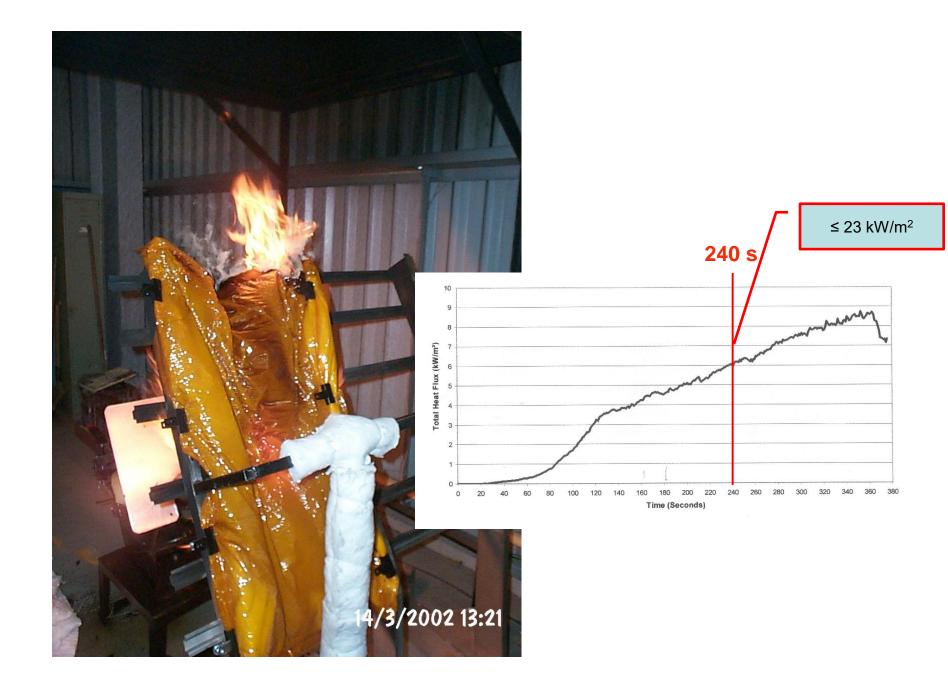

٠

٠





Fuselage Insulation: Acoustic & Fire


Fuselage Insulation: Acoustic & Fire (FAR 25.856(b) Appendix F, Part VII)


Major F & HR Technical Textile Applications (3)

- Contract and Domestic Furnishings
- Protective Clothing
- Transport
 - Aircraft
 - Ships

Ships, commercial, naval and pleasure:

- Similar textile solutions as seen in aircraft
 - Fibre-reinforced composite hulls
 - Fibre-reinforced composite bulkheads
 - Fibre-reinforced composite superstructures
- Flame resistance requirements defined by International Maritime Organisation (IMO)
- Internal structures and furnishings require defined levels of flame retardancy

Norwegian Navy All-composite Corvette

Vosper Thornycroft's new generation of patrol vessels

Welcome Aboard! – but level of hazard increases with number of passengers!!!

&

"Queen Mary 2"

"Mariner of the Seas"

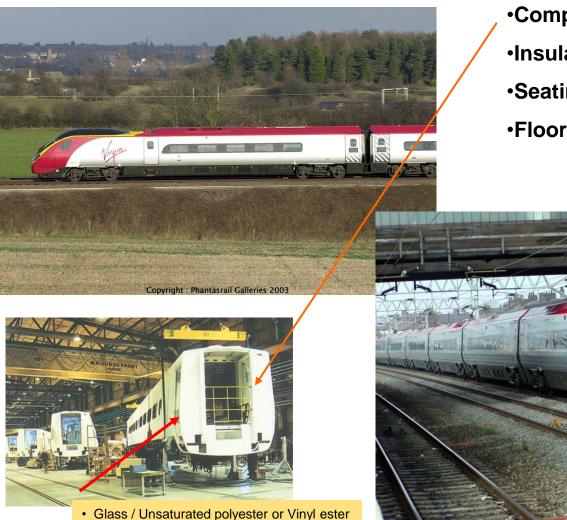
Hazards of cruising!

MS Nordlys, 15 September 2011

Royal Carribean (Freedom of the Seas) fire: 22 July 2015

Major F & HR Technical Textile Applications (3)

- Contract and Domestic Furnishings
- Protective Clothing
- Transport
 - Aircraft
 - Ships
 - Trains



3rd Jan 2013, Schiphol Airport

Trains

- Innovations in aerospace are taken up by modern railway authorities:
 - Composite rolling stock structures
 - Seating and furnishings
 - Barrier & insulation fabrics

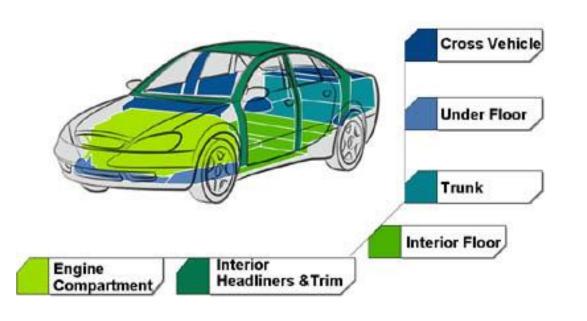
Virgin's Pendolino UK train sets

Thick laminates

Tech Textile Presence:

- •Composite body parts
- Insulation
- Seatings
- Floorcoverings

Major F & HR Technical Textile Applications


- Contract and Domestic Furnishings
- Protective Clothing
- Transport
 - Aircraft
 - Ships
 - Trains
 - Cars/coaches

Textiles in cars

Cars : Typical textile composite assemblies

• Seating fabrics: polyester

University of Bolton

- Carpet surface fabric: polypropylene or polyester
- Roofliners: polyester
- Floor composites: PP or PA6 surface tuft on PP scrim, resin (LDPE)bonded to underlying nonwoven fibrous acoustic layer

All interior textiles must pass a basic flammability test: FMVSS302

Major Fire & Heat Resistant Technical Textile Applications

KIN IIDIG

University of Bolton

- Contract and Domestic Furnishings
- Protective Clothing
- Transport
 - Aircraft
 - Ships
 - Trains
 - Cars/coach
- ???