Modelling of the Effect of Formulation Factors on Skin Penetration

Dr Taravat Ghafourian

Medway School of Pharmacy,
Universities of Kent and Greenwich

Absorption from Skin

- Release from the vehicle
- Penetration through the skin

• • Release from the vehicle

- o Formulation type (gel or emulsion)
- Viscosity
- Molecular size (Stokes-Einstein equation for diffusion of a particle)
- Solubility in vehicle and saturation

• • Penetration through the skin

- Lipid content of the stratum corneum
- Lipid pathway vs. polar pathway of the stratum corneum
- Interaction with the proteins (keratin) and lipids

Chemical penetration enhancement

$$H_3C$$
 CH_3
 CH_3

Cedrene

• • What is the mechanism?

- Increased drug release
- Increased partitioning of drug
- Increased fluidity of SC lipids
- Increased water content of the proteins in the barrier
- Specific interactions with drug

Glycyrrhizin in diclofenac gels and emulsions

	Gels		Emulsions		(O/W)	
Constituents	Formulation code					
	F1	F2	F3	F4	F5	F6
Diclofenac sodium	1	1	1	1	1	1
NaCMC	3	3	3			
Propylene glycol	40	40	40			
Glycyrrhizin		0.1	0.5		0.1	0.5
Lanette O				13	13	13
Eutanol G				13.5	13.5	13.5
Arlacel 63				2	2	2
Tween 80				1	1	1
Water	66	65.9	65.5	69.5	69.4	69

Glycyrrhizin in diclofenac gels and emulsions

Release kinetics

Glycyrrhizin in diclofenac gels and emulsions Permeation through rat skin

Formulation	ER
Gel	10.7
Emulsion	0.94
Applied to skin before gel	7.72
Applied to skin before emulsion	1.20

Glycyrrhizin penetrates the skin and changes the barrier function of the skin

Effect of enhancer Concentration

- Are they acting as surfactants?
- Micelle formation at higher concentrations
- CMC of glycyrrhizin in water is 0.025%w/v but it is increased due to propylene glycol vehicle by a factor of 10

Effect of concentrations of surfactants

Application of surfactants

- Emulsifiers in emulsions
- Solubilising agents in gels
- Foaming agent
- Detergent
- Wetting agent

Surfactants are found in most skin products

Lorazepam and Diazepam

Lorazepam

Drug	log P	solubility in water:propylene glycol 50:50 (mg/ml)	kp ×10 ³ (cm h ⁻¹)
Lorazepam	2.47	2.48	0.051
Diazepam	2.96	1.53	0.184

Diazepam

Donor phase: saturated solution of the drugs in water: propylene glycol (50:50% v/v) with or without surfactant

Effect on the skin penetration of diazepam 10 -SLS (anionic) 9 8

Shokri et al (2001) Int. J. Pharm., 228, 99-107 Nokhodchi et al (2003) Int. J. Pharm., 250 359-369

Effect on the skin penetration of lorazepam

Enhancement ratios (at concentrations below CMC)

Drug	SLS	СТАВ	Benzalkonium	Tween 80	Control
Lorazepam	10.05 (0.50)	4.67 (0.23)	7.66 (0.38)	3.75 (0.19)	(0.051)
Diazepam	_	1.27 (0.23)	7.98 (1.47)	5.68 (1.05)	(0.184)

(Values in brackets are kp x10³ in cm h⁻¹)

Lorazepam

$$H_3C$$
 Na^{\dagger} SLS

• • Terpenes

- Carvone
- Menthone
- Nerolidol
- Farnesol
- Limonenoxide

$$H_3C$$
 H_3C
 CH_2
 H_3C

CH₃

H₃C

Effect of concentration of terpenes

- Penetration of diclofenac sodium through rat skin
- Donor phase: saturated solutions of diclofenac in solvent mixture of ethanol: glycerin: phosphate buffer (60:10:30 ratio) with or without terpene concentrations

• • Estimation problems

- Large datasets are required
- The effect of enhancers are different on different penetrants
- Several possible mechanisms

Estimation by QSAR

- Quantitative Structure Activity Relationship
- For a dataset with known skin effect (increase/ reduction of penetration of other chemicals through skin):

Skineffect = f(structural properties)

Estimation of the effect of enhancers: Datasets

- Terpene enhancement effects on 4 penetrants
 - 5FU
 - Hydrocortisone
 - Diclofenac sodium
 - Estradiol
- Enhancement activities of pyrrolidinone derivatives towards hydrocortisone

• • Pyrrolidinone derivatives

Enhancement of diclofenac sodium penetration

$$\log ER = 0.297 + 0.017ESP^{+}$$

$$n = 8 \quad s = 0.298 \quad r^{2} = 0.554 \quad F = 7.4$$

- •Gels containing propylene glycol and 1% (w/w) terpene
- Penetration through rat skin

Enhancement effect of terpenes towards 5FU

Cyclic ethers and alcohols possess the lowest and the highest EV

$$\log ER = 0.138 - 5.79q^{-} - 0.46E_{V}$$

$$n = 26 \quad r^{2} = 0.627 \quad s = 0.329 \quad F = 19$$

Enhancement of Hydrocortisone penetration

Terpenes

$$\log ER = 0.719 + 0.153 \log P$$

$$n = 12 \quad r^2 = 0.76 \quad s = 0.089 \quad F = 32$$

Gels with 2% terpene Hairless mouse skin

Pyrrolidinone derivatives

Treated with enhancer solution for 1h
Drug solution in propylene glycol
Hairless rat skin

$$\log ER(Q_{24}) = 0.083 + 0.84SA^{2}$$

$$n = 16 \quad r^{2} = 0.809 \quad s = 0.18 \quad F = 59$$

$$\log ER = 0.114 + 0.172 \log P$$

$$n = 16 \quad r^2 = 0.621 \quad s = 0.38 \quad F = 23$$

Enhancement of Hydrocortisone penetration

According to Pugh et al (2005): Hydrogen bonding has a negative effect Number of chain carbon atoms has a positive effect

Enhancement of estradiol penetration

$$\log ER = 0.743 - 0.206S(I) - 2.91q^{-1}$$

$$n = 12 \quad s = 0.232 \quad r^{2} = 0.853 \quad F = 26$$

• • Effect of solvents

 Partitioning of penetrant between solvent and SC

$$P_{SC/Vehicle} = rac{P_{SC/Water}}{P_{Vehicle/Water}}$$

- Diffusion of penetrant in the vehicle and the SC
 - Viscosity of vehicle
 - Penetration of vehicle into the skin
 - Effect of vehicle on the skin

Formoterol in 32 different solvents

 Terpenes, Ethyl Linoleate, Butyl myristate, n-Octanol, water, Formamide

 Rat skin, same concentration of drug in the solvents containing small fraction of ethanol

Kakubari et al. (2006) Biol.Pharm. Bull., 29, 146 – 149.

Penetration of formoterol from solvents

$$\log Q_{24} = -0.937 atoms - 2.51^{9} \chi_{p}^{v} - 1.72 aromatics - 0.177 E_{LUMO} + 1.58$$

$$N = 32 \quad S = 0.401 \quad R^{2} = 0.611$$

$$\log kp = -2.87 - 9.96^{9} \chi_{p} + 0.0191MW + 0.0515 lipole$$

$$n = 32 \quad s = 0.430 \quad R^{2} = 0.654 \quad F = 18$$