

Development of Ion Exchange Resins with Ultra Low Residuals for Condensate Polishing Applications

Peter A. Yarnell Graver Technologies, LLC

Summary

- Ultra-Low Chloride (ULC) Anion Resin
 - Introduction
 - Objectives
 - Background
 - Development and Commercialization
 - Installation and Service History
 - Plant Experience
 - Iron Transport Reduction
 - Conclusions and Benefits
 - Future Installations
 - Acknowledgments

Summary

- Ultra-Low Sulfate (ULS) Cation Resin
 - Objectives
 - Resin Candidates
 - Testing Protocol
 - Future Work
 - Conclusions
 - Acknowledgments

Ultra Low Chloride Strong Base Anion Resins

Introduction

- Customer Driven Product Development Work
 - Dominion Millstone Power Station
 - High Purity Caustic for Anion Resin Regenerations
 - Ultra Low Residual Chloride on Strongly Basic
 Anion Resin

Objectives

- Higher Purity Strongly Basic Anion Resin for Condensate Polishing Applications in PWR's
- Reduction in Release of Residual Impurities (CI⁻) from Anion Resin
- Increase in Amine (ETA) for pH Control
- Decrease in Corrosion Product (Fe)
 Transport

Background

- Dominion Millstone Nuclear Power Station
 - Located in Waterford, Connecticut, USA
 - 2 Operating PWR's
 - 895 MWe Unit 2
 - 1154 MWe Unit 3
 - Operation
 - ETA Based Secondary Side Chemistry
 - Full-Flow Condensate Polishing
 - Non-Molar Ratio Chemistry
 - Seawater Cooled

Background

- Millstone Condensate Polishers
 - Traditional H+/OH- Operation
 - 3:2 Ratio of Anion to Cation
 - -5.7 m³ (200 ft³) Resin per Vessel
 - Unit 2
 - 7 Vessels
 - 8 Resin Charges
 - Unit 3
 - 8 Vessels
 - 9 Resin Charges

Background

- Minimize Feedwater Corrosion Transport
 - Increase Dissolved Oxygen Content
 - Air Injection for Unit 2 Only
 - Elevate Secondary Side pH
 - Utilize ETA Form Strong Acid Resin
 - Increase ETA Concentration
 - Decrease Chloride Concentration
 - Caustic Purity Limitation

Development and Commercialization

- Ultra Low Chloride Strong Base Resin for Condensate Polishers
 - Residual Chloride Content
 - Conventional Low Chloride Resins
 - <0.5 % of Sites (Condensate Grades)</p>
 - <0.1% of Sites (Nuclear Grades)</p>
 - Ultra Low Chloride Resin
 - -<0.015% of Sites
 - <30 ng/L (ppt) of chloride Leakage</p>

Development and Commercialization

- Development of Novel Ultra Low Chloride Processes
 - Post-Processed Caustic
 - Ultra Low Chloride Strong Base Anion Resin (Gravex® GR 1-9 Ultra)

Unit 2 – Installation and Service History

Lot No.	Date Installed	Service Time	Throughput	Effluent Chloride
		(days)	(X 10 ⁹ L)	(ng / L)
GR-2164	09/02/04	1401	21.75	28
GR-2497	09/01/05	125	2.0	
GR-2579	01/11/06	905	14.0	25
GR-2579	01/21/06	114	1.8*	25
GR-2668	05/24/07	407	6.3	16
GR-3100	08/09/07	330	5.1	19

^{*} Removed due to contamination from mechanical repairs.

Unit 3 – Installation and Service History

Lot No.	Date Installed	Service Time	Throughput	Effluent Chloride
		(days)	(X 10 ⁹ L)	(ng / L)
GR-2374	04/07/05	482	7.9	33
GR-2497	09/01/05	202	3.2	
GR-2668	03/29/06	531	8.3	22
GR-2668	03/30/06	171	2.3	27
GR-2668	04/14/06	812	12.6	22

Unit 3 – Installation and Service History (cont.)

Lot No.	Date Installed	Service Time	Throughp ut	Effluent Chloride
		(days)	(X 10 ⁹ L)	(ng / L)
GR-3100	12/07/07	197	3.1	20
GR-3234	01/13/08	173	2.7	10
GR-3234	O3/31/08	95	1.5	8
GR-2374#	05/01/08	64	0.98	30

^{*} Regenerated after H/OH operation.

Millstone Experience

- Ultra Low Chloride Evaluation at Dominion Millstone Power Station
 - Initial Installation (Sept. 2004)
 - Cumulative Experience
 - 7 Lots of Gravex GR 1-9 Ultra
 - 15 Vessels Installed
 - 9 Beds Operational
 - Extended Service Time
 - Extended Throughput

Steam Generator Effects

Millstone Experience

- Ultra Low Chloride Resin Experience
 - ->80 Billion Liters of Condensate Processed
 - 5200 Cumulative Service Days
 - 1.2 1.4 μg/L Steam Generator Chloride
 - 8 15 ng/L Chloride Leakage from Condensate Polishers
 - One Anion Resin Regeneration

Iron Transport Reduction

- Elevation of ETA Levels
 - Unit 2: ~1.25 mg/L to ~2.75 mg/L
 - Unit 3: ~1.50 mg/L to ~3.50 mg/L
- Reduction in Feedwater Iron Levels
 - Unit 2: $\sim 4.5 \,\mu g/L$ to $\sim 1.6 \,\mu g/L$
 - Unit 3: $\sim 4.25 \,\mu g/L$ to $\sim 2.0 \,\mu g/L$

Iron Transport – Unit 2

Iron Transport – Unit 3

Iron Transport Reduction

- Total Iron Reduction
 - Unit 2
 - Cycle 15: >150 kg
 - Cycle 18: <60 kg
 - >60% Decrease
 - Unit 3
 - Cycle 8: >280 kg
 - Cycle 12: <180 kg
 - >35% Decrease

Conclusions

- Plant Experience with Ultra Low Chloride Resin
 - Mixed Beds in both Units at Millstone Power Station
 - Multiple Lots / Multiple Vessels
 - Extraordinary Service Time (>3.5 years) and Throughput (>21 billion liters)
 - Substantial reduction in ETA cost

Conclusions

- Plant Experience with Ultra Low Chloride Resin
 - Eliminated Need for On-Site Regenerations of Anion Resin
 - Signicantly Reduced Frequency of Cation Resin Regenerations
 - Allowed On-Line Amination of Cation Resin in Condensate Polishers
 - Successful Operation in Both H/OH and Amine / OH Cycles

Collateral Benefits

- Minimal Chloride Ingress Into Steam Generators
- Reduced Metallurgical Attack in Condensate System and Steam Generator
- Increased Steam Generator Life
- Polisher Operation without Resin Regeneration

Future Installations

- 2 Units of a PWR
 - Mixed (Deep) Bed Condensate Polishers
 - ETA Chemistry
 - Corrosion Product Reduction
 - Reduce Regeneration Costs
- 1 Unit of a PWR
 - Filter Demineralizers (Powdered Resin)
 - Minimize / Eliminate Chloride Spike Immediately Following Precoating

Ultra Low Sulfate Strong Acid Cation Resins

Objectives

- Higher Purity Strongly Acidic Cation Resin for Condensate Polishing Applications in BWR's and PWR's
- Reduction in Release of Residual Leachable / Extractable Oligomers (SO₄=) from Cation Resin

Candidate Resins

Resin A

Resin B

Resin C

Resin D

Resin E

Resin F

Resin G

8% Gellular

10% Gellular

10% Gellular

10% Gellular

10% Gellular

14% Gellular

16% Gellular

Sulfate Reduction Protocol

- Commercial Cation Resins
- Testing Performed in Plant Scale Equipment
- Subjected to 3 Step Post-Treatment to Reduce Sulfate Extractables / Leachables
- Laboratory Column Extraction
- Ion Chromatography Measurements for Inorganic and Organic Sulfates & Chlorides

Preliminary Results

	Resin A	Resin A	Resin B	Resin B
	Pre-UV SO ₄ = (ppb)	Post-UV SO ₄ = (ppb)	Pre-UV SO ₄ = (ppb)	Post-UV SO ₄ = (ppb)
As Received	69	103	30	79
1st Post-Treatment	2.3	8.9	4.3	21
2 nd Post-Treatment	1.6	8.2	0.35	13
3 rd Post-Treatment	1.4	7.5	0.23	16

Future Work

- Plant Post-Treatment of Resins C, D, E, F, and G
- Aging Studies on all 7 Resins
- Refinement of Ion Chromatography Techniques and Measurements

Conclusions

- Too Soon To Tell
- Expect to Present Update on this Work at the next EPRI Condensate Polishing Workshop

Acknowledgments

- Dominion Nuclear Connecticut, Millstone Power Station
 - Lewis Crone, Chemical Engineer
 - Michael Lunny, Process Chemist
- Graver Technologies
 - Bruce Maguire
 - Marilyn Caffrey