Biofuels : Technology meets Strategy

Non-Food Oil Alternatives to Diesel Fuel

Dr Brian Dobson 20th May 2008

Biofuels Technology Development Drivers

Greenhouse gas reduction

Maximum potential of the whole supply chain

Sustainable Feedstock

Agreed criteria for feedstock sustainability

Cost and Energy Efficiency

- Large and small scale solutions
- Efficient at all stages from "earth to engine"

Maintained or enhanced performance in application

- No reduction in fuel efficiency
- Improved emissions quality

Technology Selection

- Performance Driven
- Market forces & economics to determine winner
- Legislation only where necessary

First Generation Biofuel Technology

- Primarily based on existing food crops
 - Wheat, maize and sugar cane for bioethanol
 - Rape, soy and palm oils for FAME biodiesel
- Produced using simple established technology
 - Fermentation for bioethanol
 - Methanolysis (transesterification) for biodiesel
- Utilise existing supply and purification chains
- Detail engine design determines performance
- Conflicting consumer demands lead naturally to the current food versus fuel debate

Second Generation Fuel Crops

- Specific parameters to avoid the food-fuel and rainforest destruction debates
 - Need to grow on unproductive land with low biodiversity
 - No rain forest destruction
 - Provide local employment
 - Generally poor quality soils in semi-arid conditions
 - Minimum irrigation requirement
 - Should be high yielding (te of fuel/year per hectare)
 - Vegetable oils Triglycerides with FA carbon chain lengths of C12 to C20
 - Starch/sugars for bioethanol
 - Residual biomass for combustion
 - Agronomy training as "non-food " normally implies toxic to humans.
 - New supply chain requirement to avoid contamination

Supply Chain Development Non-food oil crops

Agronomy

- Most potential non-food oil plants grow wild at present
 - Castor oil is main exception; jatropha development underway

Adaption for plantation growth

- Soil type variability
- Climate (rainfall, temperature variation, no of cropping seasons)
- Fertiliser/manure requirement
- Spacing
- Impact of pruning; potential for mechanical harvesting

Plant Breeding

Acquire Accessions to identify positive traits

- Establish breeding programmes
- Natural selection possible from wide gene pool
- Genetic modification by gene splitting not required.

Breeding Targets

- Maximise oil yield per hectare
- Ensure equal ripening for quality control at harvest.
- Modify triglyceride fatty acid profile
 - Good cold flow requires unsaturation
 - Polyunsaturation leads to poor oxidative stability
- Eliminate toxic compounds
 - Rape originally toxic due to high levels of erucic acid
 - Selective breeding modified metabolic pathway; converted erucic to oleic acid

Non-Food Oil Crop Commercialisation

- Crops under development include
 - Jatropha
 - Pongamia
 - Neem
- Tend to be trees or shrubs rather than annuals
 - Long lead times to commercial cropping
- Toxic nature varies
 - Carcinogen promoters, sensitisers, ribose inhibiting proteins
 - Understanding toxicology important for all aspects of husbandry
 - Important consideration for Europe under REACH regulations
- Scale up requirement takes non-food oils into new league
 - Palm and soy oil >30 million tes/year; rape 18 million tes/year
 - Highest tonnage non-food oil is castor oil at < 1 million tes per year – ranked only 17th in world tonnage.

Supply Chain Technology Development

This has to be aligned to the end-use of the product

- Compression ignition engine invented by Rudolf Diesel in 1897 was demonstrated at the Paris Exhibition operating on peanut oil
- Over 100 years of development on fossil mineral oils followed
- Retrofitting a renewable product requires a detailed understanding of sophisticated engine technology
 - Manufacturer's designs vary
 - E.g. Common rail pressures now over 2000bar very high shear kickback
 - Emission regulations met differently –EGR or SCR(urea)

• Fatty acid methyl ester (FAME or classical biodiesel)

- Simple first generation technology that overcomes the major deficiencies of pure vegetable oils by conversion of a tri-ester to monoesters
 - Viscosity for pumping
 - Volatility for cold starting

Second Generation Diesel Production Technology

- Tend to breakdown sustainable feedstocks into to simpler products and rebuild
 - Vegetable oil hydrosplitting/hydroisomerisation
 - Commercialised as Neste NexBTL / UOP Ecofining processes
 - Slow uptake due to high hydrogen demand and high capital
 - Syn Gas Manufacturer from biomass followed Fischer-Tropse molecule building
 - Being developed by Shell as an extension of their GTL F-T process
- Product is primarily paraffinic and hence similar to components in current En 590 ULS Diesel
 - Process technology favoured by large oil majors
 - Large scale required for good economics hence high capital
 - Not suitable for application in areas where new crops are being grown

Pre-treatment technologies for oil have to vary with both application and diesel process technology

New fuels offer potential for improved engine technology

- Homogeneous Charge Compression Ignition (HCCI)
- As distinct from:-
 - HCSI homogeneous charge spark ignition
 - Classical spark ignition gasoline engine
 - SCCI Stratified (heterogeneous) charge compression ignition
 - Classical diesel engine
- Fewer components in fuel could allow improved control
- Overcomes current environmental shortcomings
 - Petrol engine good emission quality but poor thermodynamic efficiency due to throttling losses.
 - Diesel engine good efficiency but poorer emission quality

Thank You