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Overview

e Metabolism, enzymes, genes

e Bioethanol production in yeast

e Metabolic engineering successes and failures

e Computational systems biology approaches

e Utilisation of xylose as feedstock for yeast fermentation
e Production of butanol in E. Coli

e Future directions for research
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Metabolic pathways for energy & biosynthesis
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Enzymes

e Enzymes are proteins that catalyse biochemical reactions
e Specific enzymes for specific reactions: alcohol dehydrogenase

e Enzymes reduce the activation energy of the reaction enabling
it to run faster
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Enzyme Kinetics

Example: Fermentation by

yeast
ADH2
CH3CH,0H + NAD* : >
(EtOH) ADH1 (AcAld)

e

Alcohol dehydrogenase

Byproduct of glycolysis
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DNA, RNA and Proteins

I I I I I I I I I I I
transcription t lati
GENES 4"-* RNA Mﬁ- PROTEINS 4 MODIFIED PROTEINS
I DNA | [— | l ¢o - and post-translatiional
1. acetylation

‘ I _ L I I I j— I I I — 2 prenylatiDnS
coding sequence )
3. glycosylation

* ' 4. phosphorylation
DNA T @

regulatory * L

sequence

exens

Pl I
ona [ TN 000 I I

1 \2f 3 primary transcript
¢ splicing

introns
CT 11 — -
1 2 3
mRNA

How many genes?: Human = 40,000; yeast = 6,000
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About yeast...

Saccharomyces cerevisiae

Bakers yeast, brewers yeast, budding yeast

Single celled microorganism (fungi)

One of the simplest eukaryotes

Long history and well understood

Tolerant to high ethanol concentration

Works at low pH which avoids contamination
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Bioethanol production in yeast

e 229% of all UK greenhouse gas from road transport

e 5-10%: max ethanol in petrol for vehicles to run unmodified
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Metabolic Engineering

“Metabolic engineering is the improvement of industrial
organisms using modern genetic tools” (James Bailey, ETH)

Mitochondrion Cytoplsm
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Metabolic Engineering Failures

e Simplistic approaches to find ‘rate limiting’ enzymes have
usually failed

— e.g. overexpression of hexokinase, phosphofructokinase
and pyruvate kinase failed to increase the ethanol
production rate of yeast

e Reason: cells have evolved to be robust
— Intrinsic robustness of networks and enzymes
— Natural redundancy in the metabolic networks
— Sophisticated control systems for maintaining status quo
— Regulation of gene expression
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Cellular control systems for homeostasis
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Regulation of genes by signalling pathways

e Glucose repression
— Triggered by: high levels of glucose
— Effect: switch off expression of enzymes for other sugars

e AMP kinase signalling
— Triggered by: low energy levels (ATP:AMP ratio)
— Effect: increase expression of energy producing enzymes

SCI Biofuels: Technology meets

Tuesday 20t May 2008 NL&""NCH']E’EIER Strategy Meeting




Computational Metabolic Engineering

e Detailed computational modelling of the cell

e Including all the complex interactions at the ‘system’ level
— genes, RNA, proteins, metabolites

DNA

RNA

Enzymes

Metabolites

e Simultaneous and subtle changes in multiple genes required

SCI Biofuels: Technology meets

Tuesday 20t May 2008 NL%NL'I_L]%EILER Strategy Meeting




Metabolic Control Analysis (MCA)

e MCA can be applied to both metabolic and signalling pathways

e MCA = sensitivity analysis
— how does a small change in parameter X effect model output Y?

e e.g. Flux control coefficients C.’ for metabolic networks
— C<’= % change in flux J due to a 1% change in level of enzyme e
— If 1% increase in enzyme gives 5% increase in flux then C.) = 5

— If 1% increase in enzyme gives 0.4% increase in flux then C.) = 0.4
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Differential Equations for Metabolic Networks

e Chemical equations governing interactions & transformations...

K1
S+E —— ES —X2 L E4p
k-1

(Association, Dissociation, Catalysis)

e ..are converted into ordinary differential equations (ODES):

dS_ _ Viu.S Rate of change of

dc K, +S concentration with time
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Stoichiometric Matrix
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General systems of Differential Equations

e Previous example:
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Data required to solve a dynamic (ODE) Model

v'  Stoichiometry linking the species and reactions (network structure)
v' Functional form of the reaction rate equations

v The values of the rate constants in these equations

v' The initial values of all species concentrations

v" The time horizon
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Solving (i.e. Integrating) ODE Models

e Use an ODE solver (Matlab, Mathematica, Silicon Cell, etc.)

e Solver output is the concentration profiles over time

A
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Species Y

Species X

»
»

time
e Compare model output to measured concentration profiles

e If all profiles become flat then the system reaches ‘steady state’
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Steady States

At steady state all the fluxes are in balance

Total production of each species = total consumption

Example: Synthesis and degradation of mRNA and proteins

DNA
RNA
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Flux Balance Analysis

Key idea: look for steady state flux patterns that optimise a given
objective function

— biomass production
— product yield in metabolically engineered cells

Use stoichiometric matrix only — flux patterns must satisfy
X=Nv=0

Ignore kinetics — just have max/min bounds on fluxes

Find balancing fluxes that maximise flux of product or biomass
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Engineering xylose metabolism into yeast

e Xylose is a pentose (‘difficult’) sugar
e Second most abundant abundant carbohydrate in nature

e Major component of hemicellulose which is ~ 20% plant
biomass

e Not a natural substrate for Saccharomyces cerevisiae...

e ..but there are other native xylose metabolising yeasts
— e.g. Pichia Stipitis
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Central Carbon Metabolism

Pentose
D-Xylose

GLUCOSE ——%—w
i = glus:cfe -y Mi—pq;i-?‘l:é:g’gg — %—p 6-Pgluconate phosphate
e pathway XYL1 NAD(P)H
sedohepiulose-7-F a.lm
glycogen trehalose
L ribulcse 5.7 - NAD(P)™
Glycolysis & T e ﬁ<YL3 XYL2 | Xylitol
*
fermentation xylulose-5-F D-Xylulose ¢—"
1 i NAD*
el L
wrtriose o arythrose-4-F NADH
m;ua
yoerol-3-P  Fi-glyoerde — S0 g Cor 4 Gly 4GV C1
’ ’fm".\é“ﬁ gvf SEF”/ y\uw
GLYCEROL - Gupr-g‘l*y:elnl P-a | CHAT \Thr
— J mfr’uvale\ i
PCK1
2 y

N 5 —

B acetaldeihyde = ET L}

A —> |  —mmgpea—P mligyol
Y

etate - gerre ACETATE

hd
cetaldehyde

Citric Acid Cycle -
pyruvate ADES -"AZ‘.LE"»"
POATL., ethanoc| T acatala

acehylh-Col

(respiration)

aceiyvl-Cob .

- ,.»H""_L*m - citrate
oxalosceiale £l S

MITOCHONDRION

lsacitrate oxaloacetate

BADE o .
Gapy -Gl fsocirata
1
malate 4+ S o
» GO A
A UBAT  Grws r.“:'»!i?‘: J s M?-'ﬁ'
£y r malate
o, * n-katoglutarate :IDLZ
LI o
fumarate S wEone ﬁ?'
Fg = sFoT . v
succinate glyoxyialg

o JCCGRIL, - succinate
COXSH. - D
a-ketoglularals
Gl Ao — Giu 2-oxoadipale
i
ooet
ooce

c-hetoghutarate
2-oxoadipa

SCI Biofuels: Technology meets
Strategy Meeting

Tuesday 20t May 2008



Primary metabolic engineering strategy

e Introduce the following genes (enzymes) from Pichia stipitis:
— D-xylose reductase (XYL1)
— Xxylitol dehydrogenase (XYL2)
— D-xylulokinase (XYL3)

e Growth of this engineered yeast strain is very slow because...

e ..Reductive step and oxidative step both require co-factors:
— NADPH and NAD™*
— producing NADP* and NADH respectively

:> Excess accumulation of NADH under oxygen limitation
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Model based approaches to fix NADH problem

e Modify balance between glutamate dehydrogenase
Isoenzymes

— Delete NADP* dependent GDH1 — glutamate
dehydrogenase

— Overexpress NAD* dependent GDH2
— Improves ethanol production

e Genome-scale model found 56 out of 3,500 reactions that
iImproved ethanol yield

— e.g. introduction of a new glyceraldehyde 3-phosphate
bypassing enzyme

e Evolutionary adaptation under continuous anaerobic
conditions
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Iterative Metabolic Engineering

Model parameters |:> Computational

Proposed Genetic :>
modifications

Simulated response

compare

Measured response
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Drawbacks of ethanol as transportation fuel

e Few vehicles can run unmodified on >10% EtOH fuel blends
e Lower energy content than gasoline

e Corrosive to metals in engines and pipelines

e Readily absorbs water

e Expensive to purify from fermentation broths

What are the alternatives?...
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Butanol as a transportation fuel

e Butanol (4-carbons) is more like petrol (4-12 carbons)

e Higher energy density than ethanol (88% vs. 66%)

e Less corrosive and less water soluble than ethanol

e 85% Butanol/gasoline blends used in unmodified engines
e Can transport in the same pipelines as petrol

e Easier to integrate into the existing transportation
iInfrastructure
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Engineering production of butanol in E. Coli
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Improving Butanol Yields

Genetic modification Isobutanol
production (mM)

Introduce 2-keto acid decarboxylase (KDC) from -

lactococcus lactis

Introduce alcohol dehydrogenase (ADH) from 4

saccharomyces cerevisiae

Overexpression of ilvHCD genes to enhance 2- 23

ketoisovalerate biosynthesis

Deletion of adhE, IdhA, frdAB, fnr, pta genes that 30

contribute to by-product formation

Replace ilvHCD with alsS gene from Bacillis subtilis 50

which has higher affinity for pyruvate

Deletion of pfIB to decrease competition for pyruvate | 300

300 mM = 22 g per litre butanol

Yield = 0.35 g butanol per g glucose = 86%6 of theoretical maximum
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Other directions for research

e Genetically engineered plants with less ‘biomass recalcitrance’

e Engineered multi-enzyme systems - In vitro metabolic
pathways

e ‘Global transcription machinery engineering’: gTME
— Introduce mutations into yeast transcription factors
— Select for improved ethanol & glucose tolerance

e Longer chain alcohols & alkanes from fatty acid synthesis
routes
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