Infrared Radiation-Assisted Evaporative Lithography of Colloidal Films

Joe Keddie, Argyrios Georgiadis, Matthew Hinton, Alex Nicholas Physics Department - University of Surrey, UK

Alex Routh BP Institute, University of Cambridge

Martin Murray, Simon Emmett, Phil Beharrell, and John Jennings Akzo Nobel, UK

McBain Symposium December 8, 2010

A Fateful Meeting....

1999

ACS National Meeting

New Orleans

McBain Symposium December 8, 2010

Wrongly-Assumed Nationalities.... 5 SURREY

Alex Routh in Princeton

Me in the UK

McBain Symposium December 8, 2010

Routh & Russel's Original Idea

Figure 15. Final film profile with evaporation for $0 \le \overline{x} \le 1.4$ and $2.6 \le \overline{x} \le 4$.

A.F. Routh & W.B. Russel, AIChE J. (1999) 44, 2088-2098

McBain Symposium December 8, 2010

Need for Textured Coatings

Aesthetic effects or identification (e.g. logos)

Introduce partial opacity (light diffusers)

Increased grip (e.g. on handles, floors or gloves)

Riblets for drag reduction Anti-fouling

McBain Symposium December 8, 2010

Inspiration from Nature

Placoid scales on Spinner shark (left) and Galapagos shark (right)

- No fouling from algae
- Reduced hydrodynamic drag
- Pitch of 100 m and length of 0.5 mm

V.A. Bers and M. Wahl, *Biofouling* (2004) **20** (1), 43.

M.L. Carman *et al., Biofouling* (2006) **22** (1), 11.

McBain Symposium December 8, 2010

Latex Film Formation

Colloidal polymer-inwater dispersion

The "Film Formation Dilemma"

www.mustknowhow.com

McBain Symposium December 8, 2010

The Research Problem

How do you make textured coatings that are:

- Waterborne (environmentally-friendly)?
- Hard and scratch-resistant?
- Controllable over a range of length scales?
- *Easy* to make in a one-step process without chemical crosslinkers?

The Answer:

"Infrared-Assisted Evaporative Lithography"

J. L. Keddie and A. Georgiadis, "A Method of Making a Patterned Latex Film and a Patterned Latex Film", world patent application submitted in October 2010 McBain Symposium December 8, 2010

Experimental Set-Up

250W IR Reflective Lamp Maximum emission: 1.3 m

J. L. Keddie and A. Georgiadis, "A Method of Making a Patterned Latex Film and a Patterned Latex Film", British patent application submitted in October 2009

McBain Symposium

December 8, 2010

Example of a Textured Coating

Experimental Parameters

Hole diameter, d_h : 1 mm Pitch, P : 1.5 mm Wet film thickness, h_i = 330 m Polymer T_g = 38 °C

3-D profilometry (1.5 cm x 1.5 cm)

J. L. Keddie and A. Georgiadis, "A Method of Making a Patterned Latex Film and a Patterned Latex Film", World patent application submitted in October 2010

> McBain Symposium December 8, 2010

Radiative Heating

Radiative heating is energy efficient:

- Heats directly and locally *whereas* convective heating in an oven requires heat transfer from air
- Ideal for use with shadow masks
- Can heat water to its boiling point!
- Industrial-scale IR lamps are commercially available

World patent application: "A method of making a hard latex and a hard latex." 2 Sept. 2010: WO 2010/097592

McBain Symposium December 8, 2010

m

3

0

5.0

4.0

1.0

2.0

μm

3.0

Nanoscale: Infrared Sintering

World patent application: "A method of making a hard latex and a hard latex." 2 Sept. 2010: WO 2010/097592 McBain Symposium

December 8, 2010

Influence of Pitch

Influence of Film Thickness, h_i

McBain Symposium December 8, 2010

Influence of Solids Content

Other Types of Textured Coatings

McBain Symposium December 8, 2010

Other Types of Textured Coatings

Coloured patterns (using fluorescent dyes)

Ridged patterns

Patterns with two length scales of surface features: long and short

McBain Symposium December 8, 2010

Model of Evaporative Lithography

D. J. Harris et al., Phys. Rev. Lett. (2007) vol. 98, 148301

McBain Symposium December 8, 2010

Significance of the Peclet Number, Pe

$$Pe = \frac{t_{diff}}{t_{flow}}$$

- If Pe > 1: Diffusion is slow relative to evaporative flow \rightarrow patterned film
- If Pe < 1: Diffusion is fast relative to evaporative flow \rightarrow smooth surface Pe = 630: flow wins!

$$P = 3 \text{ mm}$$

 $d_{\rm h} = 2 \text{ mm}$
 $h_{\rm g} = 500 \text{ m}$
 $h_{\rm i} = 330 \text{ m}$

P-V height: 102 m McBain Symposium

December 8, 2010

Control Parameter: Peclet Number, Pe

Comparison of times for diffusion and convective flow:

$$Pe = \frac{t_{diff}}{t_{flow}} = \frac{(P - d_h)u_x}{2D_{SE}}$$

$$D_{SE} = \frac{kT}{6 R}$$
Convective flow: $u_x = \frac{Jd_h}{2 h_i}$
Substituting: $Pe = \frac{t_{diff}}{t_{flow}} = \frac{Jd_h(P - d_h)}{4 D_{SE}h_i}$

As $Pe \propto P$, there is a minimum P that defines the minimum texture length scale that is possible.

D. J. Harris, Phys. Rev.Lett. (2007) vol. 98, 148301

McBain Symposium December 8, 2010

Dependence of Structure on *Pe*

McBain Symposium

www.surrey.ac.uk

December 8, 2010

Computational Modelling

Film height, *h*, evolution

$$\frac{\partial h}{\partial t} = -\frac{\partial}{\partial x} \left(h^3 \frac{\partial^3 h}{\partial x^3} \right) - \dot{E}$$

E is evaporation rate (a velocity)

Vertically-averaged lateral velocity:

$$\overline{u_x} = h^2 \frac{\partial^3 h}{\partial x^3}$$

A.F. Routh & W.B. Russel, AIChE J. (1999) **44**, 2088-2098 McBain Symposium December 8, 2010 Www.surrey.ac.uk

Solids fraction, , evolution

$$\frac{\partial(h)}{\partial t} + \frac{\partial(h)\overline{u_x}}{\partial x} = \frac{\partial}{\partial x} \left(h\frac{\partial}{\partial x}\right) \times \frac{1}{Pe}$$

$$Pe = \frac{h_i \dot{E}}{D_{SE}}$$

Boundary Conditions

At fluid-solid boundary

$$\overline{u_x(i)} = \frac{1}{h(i)} - \left(\begin{array}{c} f \\ - \end{array} (i-1)\right) \frac{\partial(x1)}{\partial t}$$

Forced by changing third derivative

At film edge

Forced by 2 elements on outside set to first element

Conservation of particles:

$$\sum_{i=1}^{n} h_{i} = \text{constant}$$

McBain Symposium December 8, 2010

Simulation Results

Over time, the height decreases while the packing fraction increases to a maximum of 0.64 (rcp).

Peak-to-valley height is taken as the highest point in the evaporating region to the lowest point in the masked region.

December 8, 2010

Some Initial Results from the Modelling

McBain Symposium

www.surrey.ac.uk

December 8, 2010

Advantages of IR-Assisted Evaporative Lithography

- Applicable to waterborne polymers \rightarrow No VOCs
- Variety of substrates and variety of patterns are possible – with control over topography
- Hard coatings (T_g > 40 °C) can be made, resolving the film formation dilemma
- Low energy, one-step process
- Potential for scale-up
- No crosslinking chemistry

McBain Symposium December 8, 2010

Acknowledgments

Funding for PhD Studentship of Argyrios Georgiadis:

- UK Engineering and Physical Sciences Research Council
- AkzoNobel

Funding for Matthew Hinton:

• EPSRC Knowledge Transfer Account at University of Surrey

Funding for Alex Nicholas:

and skills

South East Physics Network (SEPNet) Summary Bursary

McBain Symposium December 8, 2010

Our research truly is as much fun as

McBain Symposium December 8, 2010