RIDEAL LECTURE 2010

A joint award of the Royal Society of Chemistry and The Society of Chemical Industry

Controlling the Properties of Aqueous Interfaces

Wednesday 10 March 2010 SCI HQ, London, UK

Organised by SCI's Colloid & Surface Chemistry Group and the RSC's Colloid & Interface Science Group

Chemistry 1, 1955 The University of MelbournePreliminary reading!!

2010 Rideal Award of RSC-SCI

I am delighted!

I am so fortunate to have had such a happy life in chemistry. Why? Due to what?

- 1. An amazingly supportive family.
- 2. I have worked with an amazing cohort of **students**.
- I have worked with an amazing group of colleagues in industry and academia around the world

My Special Thank You

1. My Family

My Special Thank You

2. MY STUDENTS

"All my ex-students are perfect"

(Healy 1979)

"Yes, but some are more perfect than others!"

(David Yates 1980)

My Special Thank You

3. My Colleagues

My ICI UK Colleagues

My Academic Colleagues

The electrical double layer at the hydrophilic and hydrophobic material-water interfaces----the enemy or salvation of engineers and formulators!

Tom Healy,
Department of Chemical & Biomolecular Engineering,
University of Melbourne, Australia
tomhealy@unimelb.edu.au

The Chemistry Bit

---- Hydrophilic Interfaces First

Electrical Double Layer Charge & Potential controlled by Potential Determining Ions, (pdi)

For AgI, for example, Ag+ or I- are pdi

$$\mathbf{d} \ \mathbf{\psi_0} = \mathbf{RT/nF} \ \mathbf{d} \ \mathbf{ln}(\mathbf{a}_{\mathbf{Ag+}})$$

i.e. 59 mv /decade change in Ag+ concn.

The Chemistry Bit (continued)

Electrical Double Charge & Potential (Cont.)

-For mineral oxides, alkaline earth sulphates or carbonates, clays, latex colloids.....similar reversibility cannot be assigned unambiguously to any pdi species,

-BUT the e.d.l. potentials appear to be controlled by H⁺ /OH⁻ species as if these ions are pdi.

The Chemistry Bit (continued)

Mineral/Metal oxides, clays, latices,.....

H+/OH- are involved in surface site equilibria

$$MOH_2^+ \leftrightarrow MOH \leftrightarrow MO^-$$

where
$$K+=(N_0/N_+).a_{H+}$$
 and $K-=(N-/N_0).a_{H+}$
Where the total number of sites is $N=N_++N_0+N_-$
Notice that $K+.K-=(N_-/N_+).a_{H+}^{2-and}$
 $N-=N+$ at pH_0 , the pH of the i.e.p./p.z.c.

Such that $pHo = \frac{1}{2} (pK_{+} + pK_{-})$

Titratable Surface Charge

Metal Oxides....H+/OH- are potential determining ions.

I.E.P/P.Z.C.....Titania (rutile)

1:1 Salt

2:1 Salt

3:1 Salt

 Ba^{2+}

SURFACTANT ADSORPTION

Effect of hydrocarbon chain length on the ζ -potential of quartz in solutions of onium acetates and in solutions of ammonium acetate.

Somasundaran & Fuerstenau

AQUEOUS SOLUTION

IONIC MICELLES

HEMI-MICELLES

NONIONIC MICELLES

HYDROCARBON SOLN.

HYDROCARBON LIQUID

Colloidal Forces

ATTRACTIVE REPULSIVE

Van der Waals Van der Waals

Electrostatic Electrostatic

Bridging Steric/Structural

Depletion

Viscous/Hydrodynamic Viscous/Hydrodynamic

"Hydrophobic"

Amphoteric Latices

Harding

Shear Yield Stress

2. Electrokinetics

Colloidal Ceramic grade Zirconia

Low Mol.Wt. polyacrylic acid.

OBSERVED RHEOLOGY.

Effect of Additives

What about Hydrophobic (Non-Polar) Materials Suspended in Water?

RESPONSES

- An oxy-moron perhaps!!!
- Things like graphite, oil drops, paraffin etc do not have electrical double layers!!
- Need to pretreat such materials with an amphipathic molecule (surfactant).
- Make sure the surfactant is high molecular weigh and insoluble in water.

XYLENE-WATER, (after Marinova et al,1996)

Langmuir, Vol. 12, No. 8, 1996 2047

pН

HEXADECANE EMULSIONS,

(After Beattie and Djerdjev, 2004)

NANOBUBBLES, (AFTER Cho et al, 2005)

MICROBUBBLES, (after Takahashi,2005)

pHpzc of Non-polar Solid-Water Interfaces

Graphite, graphitized carbons

pH 0.5 to less than 6

Molybdenite

pH 1.5-3.0

Stibnite

pH 2

Paraffin Wax

pH 4-5

Talc, pyrophilite,

pH 1-2

Sulphur

pH 1.5-2.5

N9 Alkyl ethoxylate

What about Hydrophobic (Non-Polar) Materials Suspended in Water?

RESPONSES

- An oxy-moron perhaps!!!
- Things like graphite, oil drops, paraffin etc do not have electrical double layers!!
- Need to pretreat such materials with an amphipathic molecule (surfactant).
- Make sure the surfactant is high molecular weigh and insoluble in water.

Thank You

RSC-SCI

including Laura Grimsley

Speakers...coming from far away

Audience

