Are the severity and drivers of decline in UK butterflies representative of other insects?

Jeremy Thomas

SCI meeting: Insect decline

Two methods of measuring change make UK butterflies the most rigorously assessed insect taxon in the world

(1) Mapping

>10,000 people record 1.6 million butterfly locations every 5 years

Provides more-or-less complete record of distributions since 1960s

UK mapping records for plants, butterflies & breeding birds far exceed those for all other invertebrate groups

UK mapping records for plants, butterflies & breeding birds far exceed those for all other invertebrate groups

Monitoring changing population sizes using transects

(2) UK-BMS Time series (1976-) c.15,000 counts a year along fixed transects reveal clear-cut trends in existing population sizes

BMS trends correlated with BRC Atlas distribution changes

Butterfly declines compared with other groups

Repeat Atlas surveys >15 million records

Mapping records allow us to make the 1st large-scale comparison of insect, bird & plant changes

Butterfly declines > birds > plants at scale of a 228,000 km² nation supports "6th extinction" hypothesis Thomas et al 2004 *Science* **303** 1879

1980s - Disproportionate declines in butterflies recorded over longer periods

e.g. Suffolk 1850-1980

Taxon	Number of c. 1850	species in: 1980s	% change
Butterflies	50	29	- 42%
Vascular plants	1418	1343	- 5%
Amphib./reptiles	9	8	-12%
Mammals	35	34	- 3%
Birds	114	130	+14%

Thomas, JA 1991 In The scientific management of temperate communities for conservation, Blackwell pp149-19

Have other UK insects experienced similar changes?

Hambler & Speight (2004) Science 305, 1562

- "notably a higher rate of loss" than other invertebrates in UK RDB
- butterflies are a "potentially misleading guide to extinction rates"
- atypical because: warmth-loving & sensitive to climatic fluctuations
 + herbivorous

Thomas & Clarke (2004) Science 305, 1563-4

- Not quite true bumblebees & dragonflies had slightly higher rates
- Lower rates of extinction in other taxa an artefact due to poor recording

May, RM et al 1995 Assessing Extinction Rates. In "Extinction Rates", eds Lawton & May, OUP

- rare species are discovered last
- rare species are most endangered
- therefore extinctions underestimated in poorly-studied taxa

McKinney, ML 1999 High Rates of Extinction and Threat in Poorly Studied Taxa *Conservation Biology* **13**, 1273-81

"in well-studied regions many globally understudied taxa, such as insects and other invertebrates, have higher rates of threat than many other taxa, including mammals"

- rare species are discovered last
- rare species are most endangered
- therefore extinctions underestimated in poorly-studied taxa

rare species are discovered last

- rare species are most endangered
- therefore extinctions underestimated in poorly-studied taxa

- extinct:79 ± 38 10-km squares
- persist
 935 ± 100 10-km squares
 extinct < persist, P=0.000

rare species are discovered last

- rare species are most endangered
- therefore extinctions underestimated in poorly-studied taxa (May et al 1995, McKinney 1999)

Thomas, JA 2005 Phil Trans R Soc 360, 339-357

Recorded 20th century extinction rates of British inverts cf the proportion of each taxon discovered in Britain by c. 1900

Key

butterfly

1) macro-moth

2) spider

3) weevil

4) hoverfly

5) soldierflies

6) ant

7) dragonfly

8) cricket grasshopper

9) mosquito

10) bumblebee

Q = 8.13e^{-0.109u} p<0.001, rank r²= -0.91 \sum n = 2799, \approx 10% British arthopod spp

Since then, direct evidence of similar declines in UK & European insects, e.g. bumblebees & moths

"[UK macro-Moth] declines are at least as great as those recently reported for British butterflies and exceed those of British birds and vascular plants."

Are butterflies atypically thermophilous? - no

Butterfly speciesrichness increases with warm summer isotherms

Orthoptera are also more species-rich in warm latitudes

So are Odontata (& aculetae Hymenoptera)

But Staphylinid beetles abound in cooler climates

Thomas, JA 2005 Phil Trans R Soc 360, 339-357

Drivers of decline: intensive agriculture eliminates larval foodplant(s) of all but 1 UK butterfly

2 changes explain butterfly declines in UK landscapes

- Larvae of >90% spp's more specialised than once thought
- Quality of (niches in) habitat within surviving sites changed

"the 2 major reorientations in butterfly biology & conservation in 20 years" Hanski (1999)

2 changes explain butterfly declines in UK landscapes

- Surviving patches are too small or too isolated
- Adults of c. 70% spp less dispersive than once thought

"the 2 major reorientations in butterfly biology & conservation in 20 years" Hanski (1999)

With knowledge of larval niche, can create new habitat from scratch on railway (or intensive agricultural) land

e.g. 5 years later (2011): supports *M. arion* (Large blue) colony & much else

New populations match model predictions

Conclusions

- UK Butterfly declines severe: > birds plants
- Representative of many insects, but not freshwater or saproxylic species
- Main drivers on agricultural land: habitat loss & degradation/isolation of surviving fragments
- with knowledge of precise larval habitat, have probably saved 4-5 spp from UK extinction

Mellicta athalia

Polyommatus bellargus

Hesperia comma

Maculinea arion

 other rare/declining insects thrive on targeted butterfly conservation sites