

Contaminants in oils and fats: analysis and regulations

Florence LACOSTE
ITERG
f.lacoste@iterg.com

ITERG

A synergy of competences services provided

ISO 9001 V 2008 & ISO 17025

Contents

Heavy metals

Polycyclic aromatic hydrocarbons

Mineral oil

Phthalates

Regulation?

Recognized analytical methods?

Risks?

Origins of undesirable compounds

Environmental contamination metals, dioxins & PCBs, PAHs, mineral oil

Crop protection pesticide residues, mineral oil

Transport & storage phthalates, mineral oil

Production process
PAHs, mineral oil, phthalates,
3-MCPD esters & glycidol esters

Heavy metals

- Environmental contamination (air, soil)
- Regulation & International Food Standard
- → Codex Standard 193-1995
- \rightarrow (EC) n°1881/2006 contaminants in foodstuffs

Metals: methods & regulations

Analytical methods

ISO 8294 \rightarrow Cu, Fe, Ni ISO 15774 \rightarrow Cd ISO 12193 \rightarrow Pb

inductively coupled plasma optical emission

ISO/TS 21033 \rightarrow Cd, Pb, Cu, Fe, Ni

METALS	Cd	Pb	Ni	As	Cr
LOQ atomic absorption (mg/kg)	0,002	0,010	0,015	0,010	0,005
Regulation limit for oils (mg/kg)	-	0,10 EU&Codex	0,2 France	0,1 Codex	0,05 France

Metals: occurrence in edible oils & fats

Lead may be present in some cold-pressed oils

ITERG data (1992 -1999)

Heavy metals transfer from soil to rapeseed oil

Metals in the seeds are transferred to meals after seed crushing

Polycyclic aromatic hydrocarbons

- Environmental contamination
- Production process
- Regulation

 \rightarrow (EC) n°1881/2006 – contaminants in foodstuffs

PAHs origins in vegetable oils

PAHs regulation: (EC) n°1881/2006 contaminants in foodstuffs

PAHs	Maximum levels oils and fats (μg/kg)	Maximum levels coconut oil (μg/kg)	Maximum levels <i>cocoα</i> <i>butter</i> (μg/kg)
Sum of 4 PAHs: - benzo[a]pyrene - benz[a]anthracene - benzo[b]fluoranthene - chrysene	10,0	20,0	35,0 from 1.4.2013 until 31.3.2015 30,0 from 1.4.2015
benzo[a]pyrene	2,0	2,0	5,0 from 1.4.2013

PAHs: determination methods

Principle

- ✓ PAH isolation: liquid chromatography (alumina, silica gel,C18-silica gel) or HPLC (donor-acceptor complex chromatography, size-exclusion chromatography)
- ✓ Analysis: HPLC/fluorescence or GC/MS

ISO 15302 : benzo[a]pyrene in oils (LC + HPLC/FLD)

ISO 15753: 12 PAHs in oils (2 SPE + HPLC/FLD)

ISO 22959: 17 PAHs in oils (DACC on-line + HPLC/FLD)

EN xxxx (JRC): 4 PAHs in foodstuffs (SEC + SPE + GC/MS)

Method	ISO 15302	ISO 15753	ISO 22959	
BaP LOQ (μg/kg)	0,1	0,2	0,1	
Reproducibility (CVR%)	27 % (2,1μg/kg)	41% (3,21μg/kg)	10 % (2,6μg/kg)	

PAHs: some difficult matrixes

Edible oils: PAH4 levels

Screening 2012 : 21 vegetable oils

benzo(a)pyèrene chrysène benz(a)anthracène benzo(b)fluoranthène

Mineral oil

- Environmental contamination (air, soil)
- Crop protection
- Transport & storage
- Production process
- Regulation
- → (EC) n°1151/2009 import of sunflower oil from Ukraine
- → EFSA Scientific Opinion on Mineral Oil Hydrocarbons in food (2012)

Mineral oil composition

EFSA Scientific Opinion, 2012

Mineral oil: complex mixture of hydrocarbons

→ MOSH: straight or branched alkanes & alkylated cycloalkanes

→ MOAH: aromatic hydrocarbons including alkyl-substituted

Hydrocarbon compound number in mineral oil > 100 000 for those with less than 20 carbon atoms!

Different products & composition: diesel fuel, white oil, lubricant ...

Technical grade mineral oil contain 15-35 % MOAH, which is minimised in food grade MOSH (white oils)

Mineral oil detected in vegetable oils

- 2008 → contamination of sunflower oil from Ukraine with a mineral oil from unknown origin
- 2009 → contamination of walnut oil with a food grade lubricant oil during refining process
- 2010 → identification of compounds eluted as mineral oil in grapeseed oils
- 2011 → contamination of milk fat with a food grade lubricant oil during production

Contaminated Sunflower oil (MOSH analysis)

MOSH determination: ISO/CD 17880

- Fractionation of the sample by liquid chromatography on silica gel or silica gel impregnated with AgNO₃
- Quantification with an internal standard (C18 or C20)
- GC/FID analysis on an short apolar column

Elution with hexane

Solvent evaporation

GC analysis

MOSH determination: critical points

- Cross contamination to be avoided
- Quantification of C10 to C50 without loosing the volatile hydrocarbons
- Analysis of all types of samples (crude, refined, vegetable & animal oils & fats)
- Limit of quantification as low as possible
- Integration of the hump & subtraction of the "natural hydrocarbons"

It is necessary to integrate twice the chromatogram

Mineral oil determination: ISO/ CD 17880 pre-collaborative trial

43 participants from 12 countries (2012) \rightarrow dispersed results

sample	olive oil	crude soya oil
mean value (mg/kg)	62	447
reproducibility (mg/kg)	49	153
Horrat value	3,3	1,9

Phthalates

- Transport & storage
- Production process
- Regulation
- → EFSA Scientific Opinion on food additives, flavourings, processing aids and materials in contact with food (2005)
- → (EC) n°10/2011 plastic materials and articles intended to come into contact with food

Chemical structures of phthalates

DEHP

Oily visquous liquid

MW: 390,6 g/mol

BP: 385°C

Water solubility: 3 μg/l

High affinity for fat (log Kow : 7,5)

Di-methyl PHT	DMP	R1=R2=methyl
Di-ethyl PHT	DEP	R1=R2=ethyl
Di-isobutyl PHT	DIBP	R1=R2=isobutyl
Di-butyl PHT	DBP	R1=R2=butyl
Di-hexyl PHT	DHexP	R1=R2=hexyl
Benzyl butyl PHT	BBP	R1=benzyl R1=butyl
Di-n-heptyl PHT	DHepP	R1=R2=heptyl
Di-(2-ethyl hexyl) PHT	DEHP	R1=R2=ethyl-2 hexyl
Di-n-octyl PHT	DNOP	R1=R2=octyl
Di-isononyl PHT	DINP	R1=R2= isononyl
Di-isodecyl PHT	DIDP	R1=R2=isodecyl

Phthalates are everywhere

Toys
Child-care articles

Shoes-Boots-Gloves
Out-door & rainwear

Car undercoating Dashboard-Door panels-Safety glass

Flooring-Roofing- Wall covering Adhesives-Sealant-Rubber Paints-Shower curtains Wires & cables-Fresheners

Cosmetics: Perfume
Hairspray-Deodorant
Skin emollient-nail polish
fingernail elongators

Pharmaceuticals
Medical devices:
Catheters-Blood bag

(EC) n°10/2011 - Plastic materials & articles into contact with food

	Specific migration limit in food	To be used as
BBP	30 mg/kg	
DINP	Z = 0 mg/kg	Plasticizer in single-use material containing non-fatty foods except infant formulae
DIDP	$\sum = 9 \text{ mg/kg}$	
DEHP	1,5 mg/kg	Plasticizer in repeated use materials containing non-
DBP	0,3 mg/kg	fatty foods

→ Material containing these phthalates cannot be used for oils & fats

Phthalates are not used in the manufacture of or the formulation of this product.

DEHP migration in rapeseed oil

(PYC tubing)

ITERG data, 2008

Chromatogram Plots

Oil sample kept in a bottling machine tub → 3 825 mg/kg of DEHP!

Phthalates: ITERG's procedure

m/z 111 (adipates) m/z 149 (phthalates)

Advantages of the method:

- ✓ No contamination, no solvent
- ✓ Rapid analysis (45 min)
- ✓ Sensitive LOQ < 0,1 mg/kg (excepted DINP & DIDP)

DEHP in oils & fats

ITERG data, 2009

Conclusions

- Research of contaminants is part of multiple controls conducted by fat and oil industry to fulfill the EC regulation n°1881/2006.
- In the absence of regulation, the detection of contaminants must be addressed in partnership with authorities according to the toxicity of molecules.
- Risks are rather limited due to the efficient elimination during oilrefining steps
- However some contaminants can be formed during the production process of vegetable oils such as esters of 3-MCPD & esters of glicydol.

A special thanks to....

ITERG Analysis Department team

