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Core Ligand Classes of Chiral Technologies 
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Scope of Asymmetric Hydrogenation  
 

Feasibility well-established 
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Scope of Asymmetric Hydrogenation  
 

Increasing difficulty 
Feasibility well-established 
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Scope of Asymmetric Hydrogenation  
 

  Evidences of feasibility 
Feasibility well-established 
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Asymmetric Route to JNJ-26076713 

MedChem route required chromatographic 
separations of four diastereoisomers 

Two parallel routes from the acid and the 
ester were evaluated at JM CCT 

Potent, selective αVβ3/αVβ5 Integrin antagonist – cell 
adhesion inhibitor -  age related macular degeneration 
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Ester Hydrogenation Route 
 

Kinney, Telhea, Zanotti-Gerosa, Grasa  et al. Tetr. Asymmetry 2008, 19, 938 

 

A broad screen indentified a novel catalyst 

Addition of Iodine can modify the iridium catalyst to reduce the quinoline ring 
 

(R)-Me-BoPhoz-Ir
               or
(R)-Me-BoPhoz-Rh
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Acid Hydrogenation Route 

Kinney, Telhea, Zanotti-Gerosa, Grasa  et al. J.Org.Chem. 2008, 73, 2302; Tetr. Lett. 2008, 49, 5328. 

Acid was more reactive with lower ee, which was upgraded to 99% on work-up 
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Diastereoselective Ester Hydrogenation 

Starting material for natural product  

synthesis in S.V. Ley’s group 
 
Newton, Ley, Grainger, Casas-Arcé 
et al. Adv. Synth.Catal. 2012, 1805 
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Unconventional Alkene Hydrogenation 

The ee  increased from 12% (Me-BoPhoz) to 
90% (PhEt-BoPhoz) by modification of              
N-substituent 
 
 

Gross, Zook, Reddy et al.  OPRD 2008, 12, 929 
Gross, Zook, Zanotti-Gerosa et al.  Tetr. Lett. 2012, 53, 1025 
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Binap Asymmetric Hydrogenation Catalysts 
 

Binap, Tol-Binap and Xyl-Binap ligands 
are off-patent 

 

Binap-Ruthenium catalysts:                    
C=O, C=N hydrogenation (ketoesters, 
reductive amination, JST technology) 

Binap-Iridium catalysts:                           
C=N hydrogenation  

Binap-Rhodium catalysts:        
hydrogenation,  allylic isomerisation, 
1,4-additions, hydroacylation….. 
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New Route to Solifenacin 

In 2008, literature precedents suggested two main areas: 

Transfer hydrogenation  

Iridium-catalysed hydrogenation 
Not yet  published in 2008:  Angew.Chem.Int.Ed. 2011, 50, 10679        

[{Ir(H)-[(S,S)-(f)-Binaphane]}2(µ-I)3]+I-, S/C 2,000/1, DCM, I2, HI, RT, 24 h, 95% ee  

N.HCl NHchiral catalyst

H2

N O

N
O

Solifenacin

Ružič, Pečavar, Prudič, Kralj, Scriban, Zanotti-Gerosa , OPRD  
2012, 16, 1293 



Iridium Catalysts, Additives, Solvents Screen   

25 ligands tested in situ with [Ir COD Cl]2 in MeOH and DCE: 

 Best results in DCE: P-Phos (84% ee), Tol-P-Phos (78% ee), 

 Binap (60% ee), Binaphane (95% ee but  only 24% conv) 

 

 

Binap + [Ir COD Cl]2 tested in 9 solvents and two additives (I2 and iodide)  

Binap + [Ir COD Cl]2 tested in THF solvent with 25 additives: 

 ee increased to 78% ee with AcOH  

 ee increased to 87% ee with H3PO4  

Ružič, Pečavar, Prudič, Kralj, Scriban, Zanotti-Gerosa , 
OPRD  2012, 16, 1293 

Presenter
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Solvent and Acid Optimisation   

DCM    81% ee  Binap,    85% ee P-Phos 
AcOH in DCM:   81% ee  Binap,    87% ee P-Phos  
__________________________________________________________ 
toluene:    60% ee Binap, 
AcOH in toluene:   82% ee Binap,    88% ee P-Phos  
__________________________________________________________ 
IPA:   72% ee Binap, 
AcOH in IPA:  70% ee Binap,  
H3PO4 in IPA:   90% ee Binap,    91% ee P-Phos 
__________________________________________________________ 
THF   66% ee Binap, 
H3PO4 in THF  87% ee Binap,    95% ee P-Phos 
H3PO4 in THF + KI 82% ee Binap,    92% ee P-Phos 
__________________________________________________________ 

   30 bar H2, 50oC, 16 h, S/C 43/1 to 425/1 

 

 

 



Final Reaction Conditions 

Catalyst:     (S)-P-Phos + [Ir COD Cl]2 (in situ, >95% ee); Binap viable  
  alternative (87% ee) 

Solvent:   THF / H3PO4  or  IPA/ H3PO4  

Loading:  2500/1 (1.5 g),  S/C 1500/1 (15 g), 1000/1 (200 g)  

 

 

 

 

 

 

 

 

 

 

 

N.HCl NH

200 g >97% conversion, 95-98% ee (S),
>99% purity, >98% ee after recrystallization 

(95% yield)

S/C 1000/1, (S)-P-Phos + [Ir COD Cl]2

60oC, 20 bar H2, 48 h

THF, 1.5 eq. of H3PO4 aq. 85%

Ružič, Pečavar, Prudič, Kralj, Scriban, Zanotti-Gerosa , 
OPRD  2012, 16, 1293 



New Synthesis of Aliskiren  

Aliskiren is a direct renin inhibitor, marketed by Novartis for the treatment of hypertension 

Chemessentia aimed at original and cost-effective synthesis of this API 

Chemessentia devised route in collaboration with University of Siena (Italy) 

Catalytic expertise was brought by Johnson Matthey, Catalysis and Chiral Technologies 

Arena, Barreca, Carcone, Cini, Marras, Nedden, Rasparini, 
Roseblade, Russo, Taddei, Zanotti-Gerosa                                  
Adv. Synth. Catal.  2013, in press, DOI: 10.1002/adsc.201200934 

Barreca, Carcone, Cini, Marras, Rasparini, Russo, Taddei             
La Chimica e l’Industria, March 2013, 129 
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Aliskiren: Retrosynthesis 
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Enol Ester Asymmetric Hydrogenation 
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(S)-Phanephos
97% yield, >99.5% ee

Heterogeneous and homogeneous, chiral and achiral catalysts was tested 

Choice of protective group was key to success (acid preferable to ester) 

Enol-acetate hydrogenation preferred to ketoester hydrogenation with Ru-Binap 

[(S)-Phanephos Rh COD]BF4 provided high enantio- and diastereoselectivity 
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Noyori Ketone Reduction 
 

Licensed to JM CCT from the Japanese Science and Technology Corp. (JST) in 2003 
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Hydrogenation vs Transfer Hydrogenation 
Hydrogenation 

C=O reduction 
Basic conditions (alcohol + t-BuOK) 
Pressure equipment (1 to 100 bar) 
TON 1,000 - > 10,000/1 upon optimisation 
Catalyst BisphosphineRuCl2Diamine 

 

Transfer Hydrogenation 

C=O and C=N reduction 
Acidic to basic conditions (HCOOH/Et3N or 
Na-formate ) 
Larger variety of conditions can be tested 
TON 100 - > 3,000/1 upon optimisation 
Catalyst RuCl Arene Sulfonated-Diamine 
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Hydrogenation of Heterocyclic Ketones 

Imidazo-pyridine-ketone: [Xyl-P-Phos RuCl2 DAIPEN] superior to the Binap analogue:    TON up to 

3,000, >95% ee  

Benzoimidazole-ketone: [Xyl-P-Phos RuCl2 DAIPEN] applied on Kg scale on the O-Bn substrate:   

TON 2,500, >90% ee  

Palmer, Zanotti et al. Tetr.: Asymm. 2008, 19, 1310; Tetr. Asymm. 2008, 19, 2102 
Palmer et al. OPRD  2008, 12, 1170 

 
 

N

N

OBn

Ar

O

Me2N

O

[(S)-Xyl-P-Phos RuCl2 (S)-DAIPEN]

N

N

OH

Ar

O

Me2N

O

S/C 3000/1, >95% ee
S/C 2,500/1, w/w 1,000/1,
> 95% ee

N

OMe

OMe

MeO
MeO

P
P

N

Ru

H2
N

N
H2

Cl

Cl

Ar Ar
Xyl

Xyl

Xyl

Xyl

Ar = 4-MeO-Ph



New Route to (S)-Phenylephrine 

Requirements: high enantioselectivity and productivity, avoiding protection/deprotection.   
Competing catalytic processes: biocatalysis and rhodium-catalysed asymmetric hydrogenation 
 
HCl salt of the unprotected substrate was successfully reduced using an excess base:          
fast reaction to minimize side-products 

 
Acc.Chem.Res. 2007, 40, 1367 
McGarrity, Zanotti-Gerosa Tetrahedron: Asymmetry 2010, 21, 2479 
 

HO
O H

N

full conversion,  
80% yield
97% ee (R)

HO
OH H

N
[(R)-Xyl-P-Phos RuCl2 (R)-DAIPEN]

S/C 15,000/1-20,000/1, 
30 bar H2, 65oC- 80oC,
KOH 10M, i-PrOH, 1 hour> 3 eq. of base

.HCl

N

OMe

OMe

MeO
MeO

P
P

N

Ru

H2
N

N
H2

Cl

Cl

Ar Ar
Xyl

Xyl

Xyl

Xyl

Ar = 4-MeO-Ph



Tethered catalyst increases activity and 
robustness against polyfunctionalised substrates 

It can be used in both transfer hydrogenation and 
hydrogenation 

 

Wills Tethered Catalyst 

2006: mg sample sent by Prof Wills 
tested in customer project 
2010-11: commercial production on 
Kg scale 

Ru
N

N
Ph

Ph

Cl

H

Ts



Phosphine-Free Asymmetric Hydrogenation 
 

Wills, Jolley, Zanotti-Gerosa, Nedden, Seger  et al. Adv. Synth. Catal. 2012, 354, 2545 
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Baratta’s Catalysts 
 

[(P^P) Ru Cl2 Ampy] and [(P^P) RuCl (AMBQ)] catalyse both transfer hydrogenation 
(Baratta) and hydrogenation (Noyori, alkyl ketones) with very high activity (TON > 10,000)  
 
Under licence from the University of Udine (Italy)  
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Baratta et al. Chem. Eur. J. 2008, 14, 9148 

Baratta et al. Angew.Chem.Int.Ed. 2007, 46, 7651 
 



‘Multitasking’ Catalysts 
 

[Dppf RuCl2 Ampy]: multitasking catalyst for carbonyl / alcohol interconversion reactions  

Baratta et al. Organometallics  2012, 31, 1133 
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Heterogeneous Catalysts 
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JM-Lilly Research Collaboration 
 
 

The aryl(imidazo[1,2-b]pyridazinyl)methane intermediate to LY2784544, a JAK2 inhibitor, is 

obtained in a single step by treatment of ketone with 6 eq. of Et3Si and 12 eq. of CF3COOH. 

Alternative processes have drawbacks (e.g. Cl3SiH / Et3N, H3PO2) or did not work (e.g. Wolff-

Kishner). 

 
Mitchell, Cole, Pollock, Coppert, Burkholder, Clayton  Org. Process. Res. Dev. 2012, 16 , 70; 
Campbell, Cole, Martinelli, May, Mitchell, Pollok, Sullivan Org. Process. Res. Dev. 2013, 17, 273 
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A Challenging Hydrogenation 
 
 

Grainger, Zanotti-Gerosa, Cole, Mitchell, May,  Pollock, Calvin ChemCatChem 2013,  in press 
DOI: 10.1002/cctc.201200526  

 

One-pot ketone hydrogenation 
and alcohol hydrogenolysis would 
provide the most straightforward 
approach  
 

but 
 

several side-reactions are 
possible due to the complexity of 
the molecule 
 

 



One-Step Hydrogenolysis 
 
 

Pd/C and other heterogeneous catalysts were tested: 
 
Solvents (THF, toluene, AcOH, water);    Temperatures (30 to 70oC);                       
Pressure (6 to 30 bar H2);     Additives (HCl, NaCl, ZnCl2, CuCl2, CuSO4). 
 
Only side-products were formed, mainly from morpholine cleavage and dechlorination 
Tentative structural assignement based on LC/MS analysis 
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Ketone Reduction to Alcohol Intermediate 
 
 

Heterogeneous catalysts: Ir/CaCO3 (JM type30) gave clean alcohol in MeOH but 
only with incomplete conversion 
 
Homogeneous catalysts for hydrogenation and transfer hydrogenation  were 
tested in search for improved chemoselectivity: 
 Noyori-type hydrogenation and transfer hydrogenation (first-generation); 
 Baratta and Wills catalysts (second-generation) 
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Baratta Hydrogenation Catalysts 
 
 Catalyst      S/C      Conv. 

 
[(Ph3P)2 RuCl2 EN] 1,000/1    4% 
 
[Dppb RuCl2 AMPY] 1,000/1    71% 
 
[Dppb RuCl AMBQ] 1,000/1    100% 
 
[Dppb RuCl AMBQ] 2,000/1    99% 
 
 
Reaction conditions: 
Baratta‘s AMPY and AMBQ catalysts: MeOH, 5% t-BuOK, 50-60oC, 27 bar H2  
first-generation Noyori catalysts: i-PrOH, 5% t-BuOK, 50oC, 27 bar H2 
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Wills Transfer Hydrogenation Catalysts 
 
 Catalyst      S/C   Formate    Conv. 
 
[Ts-EN RuCl (p-cym)]  1,000/1   NH4OOCH  60% 
 
[Ts-EN-teth RuCl]      5,000/1   NH4OOCH 100% 
 
[Ts-EN-teth RuCl]       10,000/1  NH4OOCH 99.5% 
 
[Ts-EN-teth RuCl]      5,000/1   NaOOCH  41% 
 
Reaction conditons : AcOEt/water 4/1, 80oC, 16 h 
 
Achiral Wills catalyst provided much higher activity than first generation achiral 
Noyori catalyst 
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Alcohol Hydrogenolysis with Copper Salts 
 
 Solvent (4/1)         Additive        Conv.       Product 

 
THF/ HCl aq.    -   96%  - 
 
THF/HCl aq.  10% CuSO4  43%      41% 
 
AcOH/HCl aq. 10% CuSO4  >99%      75% 
 
AcOH/HCl aq.  1% CuSO4  >99%      95% 
     

 Catalyst: 5% Pd/C 5R39 
 
Other salts (FeCl2, NiCl2, CeCl3, Zn(OAc)2, MgBr2) only gave side-products 
 
Replacement of AcOH with of H3PO4 and use of Hastelloy autoclaves provided 
higher reproducibility 
 

Presenter
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Why Copper ? 
 
 Hydrogenation with Cu modifiers with Pd supported catalysts or preformed 

bimetallic Pd-Cu catalysts has some precedents:  
 
 selective dechlorination in the presence of C=C bonds, 
 denitration of water 

 diastereoselective imine reduction 
   ……but not for alcohol hydrogenolysis…. 
 
 
Depending on the different applications different mechanistic suggestions have 
been proposed 
 
Under the reaction conditions copper precipitation may occur to form a metal 
layer and act as modifier of the palladium catalyst  
 
 
 
 



 
 
 

Stepwise approach using both heterogeneous and homogeneous catalysts 
 
Homogeneous catalysts have provided high activity and perfect chemoselectivity 
 
A combination of Pd/C and Cu salts has provided high chemoselectivity 
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S/C 5,000/1
NH4OOCH,
water/ AcOEt
80oC, 16 h 100% conv.

  97% yield

5% Pd/C JM5R39
1.4% CuSO4

5% w/w,
H3PO4/HCl aq. 1/1
60oC, 34.5 bar H2,
24 h

>99% conv.
80% yield

JM-Lilly Collaboration: Conclusions 
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