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Introduction

• (Context)

• Introduction to CatScI

• Experimental Design (DoE)

• Principal Component Analysis (PCA)

• A Worked Example

• Further Examples

• Conclusions
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About CatScI Ltd

• UK-based SME – spun out of AstraZeneca in Q1 
2011

• Highly experienced ex-pharma management team

• State-of-the-art automated screening laboratory

• We specialise in the rational understanding, 
development and optimisation of catalysed 
reactions across the range of chemical industries

– bio- and chemo-catalysis, homo- and hetero-geneous

– R&D experience at all stages of the project timeline, from 
discovery chemistry through to full scale manufacturing



CatScI Facilities – Weighing Station



CatScI Facilities – Liquid Dispensing
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CatScI Facilities – Reaction Station



CatScI Facilities – Glove Box
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Analytical Instrumentation
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Reaction Profiling
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CatScI Capabilities

• Bio-catalysis

• Homogeneous catalysis

• Heterogeneous catalysis

• Metal recovery/recycle

• Process development

• Solvent/reagent selection

• Training and Consultancy

Powered by our expertise and experience in

• Reaction understanding

• Statistical methods (DoE and PCA)

• Analytical excellence



Design of Experiments (DoE)



Experimental Design

• Substrate(s) may be limited

• Experiments take time (limited)

• Reagents and solvents are consumed (cost)

• Analysis takes time (limited)

• Can only run a finite number of experiments

• Your time is more precious than the metal

• Aim to maximise data for the time and cost

– Leads to greater Reaction Understanding
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Design of Experiments (DoE)

• DoE is an efficient, structured way to investigate 
potentially significant experimental factors…

• …and their cause-and-effect relationship on the 
experimental outcome (responses)

• DoE uses statistical methods to extract and 
interpret the relationships between the factors

• Applicable to all chemical reactions and processes
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For a Typical Chemical Reaction

Substrate A
Substrate B
Reagent
Solvent
Order of addition
Type of equipment

Substrate A/B ratio
Reagent quantity
Temperature
Concentration
Rate of addition
pH

Time

Factors Responses

Discrete

Continuous

Conversion
Selectivity (regio)
Selectivity (stereo)

Selectivity (enantio)
Rate or rate constant
Equilibrium constant

Purity/Impurities

Cost
Efficiency

Throughput
Sustainability

Isolated Yield
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Comparison of DoE with OVAT



One Variable at a Time (OVAT)

• Consider two factors for a typical reaction
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OVAT – First Factor

• Vary one factor from an arbitrary starting point
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OVAT – Second Factor

• At the optimum level of the first factor, vary the 
second factor
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OVAT – Final Result

• A local “optimum” is identified…

• …but not the actual optimum
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DoE – Screening Design

• A simple screening design in the same region
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DoE – Optimisation Design

• A follow-up DoE design leading to optimisation
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Comparison of DoE with OVAT

• With OVAT, genuine optimum may be missed

– the experimental approach may make it impossible to find!

• Inefficient use of resources

– more experiments gave sub-optimal result

– better conditions are available

• Limited coverage of chemical reaction space

• No information on interactions

• No measure of variability (experimental error)

• DoE gives more data from fewer experiments
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Response Surface
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Response Surfaces

24



Response Surfaces 
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Types of Design



A Two Factor, Two Level Design

73 93

60 76

60

30

20 37Temperature (°C)

T
im

e 
(m

in
)
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• Quantitative, not just qualitative

• DoE data is used multiple times



Quantify the Main Effects

• Average of values at high setting minus average of 
values at low setting

• Main effect of temperature is:

{(93 + 76)/2} − {(73 + 60)/2} = 84.5 − 66.5 = 18

• Main effect of time is:

{(93 + 73)/2} − {(76 + 60)/2} = 83 − 68 = 15

• DoE experimental results are used multiple times

– more data is extracted from each experiment

– a key characteristic of DoE
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Modelling a Two Factor Design

• 60 = b0 − b1 − b2 + b12 + e1
• 73 = b0 − b1 + b2 − b12 + e2
• 76 = b0 + b1 − b2 − b12 + e3
• 93 = b0 + b1 + b2 + b12 + e4
• 80 = b0 + e5

Experiment Temperature Time interaction Response

x
1

x
2

x
1
x
2

y

1 -1 -1 +1 60

2 -1 +1 -1 73

3 +1 -1 -1 76

4 +1 +1 +1 93

5 0 0 0 80

5 equations 
5 unknowns

this can be solved
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A Three Factor, Two Level Design
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Three Factor Design Interactions

A B C AB AC BC ABC

1 -1 -1 -1 +1 +1 +1 -1

2 -1 +1 -1 -1 +1 -1 +1

3 +1 -1 -1 -1 -1 +1 +1

4 +1 +1 -1 +1 -1 -1 -1

5 -1 -1 +1 +1 -1 -1 +1

6 -1 +1 +1 -1 -1 +1 -1

7 +1 -1 +1 -1 +1 -1 -1

8 +1 +1 +1 +1 +1 +1 +1

Control 0 0 0 0 0 0 0
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No Interaction

• An interaction exists when differences on one 
factor depend on the level of another factor
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Some Interaction

• An interaction exists when differences on one 
factor depend on the level of another factor
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1. Aim & 
Objective

2. Factors 
& Ranges

3. Choose 
response(s)

4. Select 
design

5. Carry out 
& analyse

6. Check 
results

7. Model 
the data

8. Validate 
predictions

34
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Why Factorial Design?



Factorial Experimental Design

• Experiment numbers grow exponentially as the 
number of factors increase

– as do the number and complexity of interactions
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Factors Full set Recommended Factorial design

3 8 + 3 4 + 3

4 16 + 3 8 + 3

5 32 + 3 16 + 3 8 + 3

6 64 + 3 32 + 3 16/8 + 3

9 512 + 3 128 + 3 32/16 + 3

12 4096 + 3 256 + 3 32/16 + 3



Half Factorial – Design 1
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A B C

1 − − −

4 + + −

6 − + +

7 + − +

C
at

al
ys

t L
oa

di
ng

Temperature



Half Factorial – Design 2
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Half Factorial – Tetrahedron

a tetrahedral fractional 
design will cover as 
large a part of the 
design space as possible
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Resolution of Factorial Designs

2 3 4 5 6 7 8 9 10 11 12

4 Full 1/2

8 Full 1/2 1/4 1/8 1/16

16 Full 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

32 Full 1/2 1/4 1/8 1/16 1/32 1/64 1/128

64 Full 1/2 1/4 1/8 1/16 1/32 1/64

128 Full 1/2 1/4 1/8 1/16 1/32

Factors

E
x
p
e
ri
m
e
n
ts

40

• Factorial experiment designs can provide 
significant information from fewer experiments

– need to balance information required with realistic 
number of experiments



For a Typical Catalytic Reaction

Substrate A
Substrate B
Catalyst
Ligand
Solvent
Base
Additive
Order of addition

Substrate A/B ratio
Base quantity
Temperature
Concentration
Rate of addition
Catalyst quantity
Catalyst/ligand ratio
Base/Additive quantity

Factors Levels Responses

Discrete

Mol. equiv.
Mol. equiv.
K
Molarity
Mins
Mol. equiv.
Mol. equiv.
Mol. equiv.

Conversion
Selectivity (regio)
Selectivity (stereo)

Selectivity (enantio)
Rate or rate constant
Equilibrium constant

Purity/Impurities

Cost
Efficiency

Throughput
Sustainability

Yield
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A Typical Cross-Coupling Reaction

42

• Suzuki reaction with defined R
1 
and R

2

• Consider only one halide or pseudo-halide

• Consider only the boronic acid

• Consider standard factors at 2 levels

• Consider all catalyst/ligand combinations

• Consider all commercially available solvents

• Limit bases to four (1 factor at 4 levels)
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= 2
= 2
= 2
= 2
= 2
= 2
= 2

= 2
= 9
= 4
= 9

Stoichiometry
Base equivalents
Catalyst loading
Metal/ligand ratio
Water
Concentration
Temperature

Catalyst
Ligand
Base
Solvent

C
O
N
T
IN

U
O
U
S

D
IS
C
R
E
T
E

rational 
selection

using PCA

= 2
= 500
= 4
= 100

= 1
= 1
= 1
= 1
= 1
= 1
= 1

= 1
= 3
= 1
= 3

NUMBERS OF 
(DESIGNED) 
EXPERIMENTS

32 + 351.2M 83k

definition 
of factors

using PCA

LEVELS FACTORSVARIABLES
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Dealing with Discrete Factors –
Principal Component Analysis



Discrete Factors

• Solvents

• Amines

• Lewis acids

• Dione ligands

• Phosphine ligands

• Aromatic substituents

• Eluent for chromatography

• Supports for chromatography

• …etc….
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Principal Component Analysis (PCA)
• Every chemical can be described by properties

– Physical (mp, bp, density etc)

– “Theoretical” (bite angle, bond lengths, orbitals etc)

• A Principal Component (PC) is the sum of one or 
more of these properties

• PCA is a way of identifying patterns in data

– expresses data to highlight similarities and differences

• Removes redundancy and reduces dimensions

• See standard textbook
– Carlson, R.; Carlson, J. E. Design and Optimization in Organic Synthesis, 

2nd ed.; Elsevier: Amsterdam, 2005 (ISBN 0-444-51527-5)

• Example follows…
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PCA – An Example

PCA helps show the 
pattern in the dataset
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Reagent Selection in Practice
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Coding of Reagents
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Position PC1 PC2 PC3

0 0 0 0

1 -1 -1 -1

2 -1 -1 1

3 -1 1 -1

4 -1 1 1

5 1 -1 -1

6 1 -1 1

7 1 1 -1

8 1 1 1



CatScI PCA Maps
• Solvents

– 500 solvents, 20 properties/descriptors

• Monodentate phosphine ligands

– 378 ligands, 29 properties/descriptors

• Bidentate phosphine ligands

– 346 ligands, 28 properties/descriptors

• NHC ligands – available 

• Mixed ligands – available 

• Dione ligands – available

• Amines – available

• (Lewis acids – available)
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Case Study



“Borrowing Hydrogen” Example

• Challenging reaction to give a good spread of data
– Reactions works well for Ru (100%)

• But not very fast so can differentiate ligand effects

– Reaction is poor for Ir (~30%)
• Reaction improves with ligand added (not standard)

• A good reaction to investigate catalyst, ligand and 
solvent effects



Diverse Range of Ligands
Monodentate P ligands PC1 PC2 PC3

Tri-p-tolylphosphine 0 0 0

Tris(pentafluorophenyl)phosphine -1 -1 -1

Tris[4-(trifluoromethyl)phenyl] phosphine -1 -1 1

Triethyl Phosphite -1 1 -1

Triisopropylphosphine -1 1 1

Tri-tert-butylphosphine (HBF4 salt) 1 -1 -1

Tris(2-methoxyphenyl)phosphine 1 -1 1

2,8,9-triisobutyl-2,5,8,9-tetraaza-1-
phosphabicyclo[3,3,3]undecane 1 1 -1

Triisobutylphosphine 1 1 1

Bidentate PP and PN ligands PC1 PC2 PC3

Racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl 0 0 0

(R,R)-Kelliphite -1 -1 -1

2-diphenylphosphino-1-methyl-1H-imidazole -1 -1 1

Bis(dimethylphosphino)methane -1 1 -1

Biphephos -1 1 1

Nixantphos 1 -1 -1
tBu-Xantphos 1 -1 1

1,2-Bis(dicyclohexylphosphino)ethane 1 1 -1

1,1'-Bis(di-i-propylphosphino)ferrocene 1 1 1



Coding for Nine Ligands
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Position PC1 PC2 PC3

0 0 0 0

1 -1 -1 -1

2 -1 -1 1

3 -1 1 -1

4 -1 1 1

5 1 -1 -1

6 1 -1 1

7 1 1 -1

8 1 1 1



Monodentate Ligands
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Bidentate Ligands
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Ligand Activity for Ru
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Ligand Activity for Ir
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Coding for Nine Solvents
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Position PC1 PC2 PC3

0 0 0 0

1 -1 -1 -1

2 -1 -1 1

3 -1 1 -1

4 -1 1 1

5 1 -1 -1

6 1 -1 1

7 1 1 -1

8 1 1 1



Comparison of Tetralin and Toluene 

Exp No Ligand Code Catalyst Additive Solvent Conv/9h

10 DiPPF PP049 Ir None Toluene 96.7

4 DiPPF PP049 Ir None Tetralin 77.1

9 DiPPF PP049 Ru None Toluene 98.7

3 DiPPF PP049 Ru None Tetralin 95.8

2 DPE-Phos PP038 Ir None Tetralin 32.1

8 DPE-Phos PP038 Ir None Toluene 31.1

7 DPE-Phos PP038 Ru None Toluene 99.7

1 DPE-Phos PP038 Ru None Tetralin 97.3

5 iBu3P PL216 Ru None Tetralin 100

11 iBu3P PL216 Ru None Toluene 100

6 tBu3P PL007 Ir None Tetralin 65.3

12 tBu3P PL007 Ir None Toluene 61.2

• Toluene and tetralin are both good solvents



Monodentate Ligand Analysis
Using statistical tools



Replica Plot
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Important Parameters 
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Interaction: Phosphine PC1 and PC3
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Phosphine Chemical Space: PC1.PC3
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Interaction: Phosphine PC2 and Cat.
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Phosphine Chemical Space: PC2.Cat
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Bidentate Ligand Analysis
Using statistical tools



Replica Plot
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Important Parameters 
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Further Case Studies in Brief



Case Study 1: Enabling Technology

• Background: a low-yielding, early phase Suzuki reaction 
with high catalyst loading

• Aim: find an active catalyst and investigate key parameters

• Result: a single design delivered a fit-for-purpose process in 
only 2 weeks



Case Study 2: Solvent Selection

• Background: a challenging non-robust Suzuki reaction 
which necessitated a high catalyst loading

• Aim: develop a robust reaction and reduce the catalyst 
loading

• Result: reduced catalyst loading combined with a higher 
yield saved $250,000 per 60 kg delivery



Case Study 2: Solvent Selection
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Case Study 4: Predictive Catalysis

• Background: a late phase Buchwald-Hartwig sulfamidation
requiring an expensive ligand

• Aim: investigate alternative ligands, Pd sources and 
solvents to explore thoroughly the reaction space

• Result: a cheaper IP-free ligand was found saving €190,000 
per 80 kg delivery without compromising other factors



Case Study 4: Predictive Catalysis
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Conclusions



Fractional design 
to investigate all 
potential factors

Further experimental 
design(s) focusing on 
chemical space of 
interest

Quadratic design for 
detailed reaction or 
process modelling

Confirmation of 
understanding across 
entire operating 
range
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Summary

• DoE is a powerful technique for maximising data 
from a minimal number of reactions

– can be applied to many chemistries

– especially valuable for TM-catalysed reactions 

• PCA provides a method to quantify discrete factors 
as continuous factors

• DoE training available from CatScI

• Let us optimise your catalysis!
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