

Ionisable Drugs on the Market

- Approximately two-thirds of drugs on the market contain at least one group capable of ionisation in a pH range of 2 – 12
- A survey of the WDI in 1999 assessed ~52,000 compounds
- Of the ~32,500 that contained ionisable groups, most contained at least one basic centre
- Each ionisable centre in a molecule has an associated pK_a value
- Solution
 Knowledge of the pK_a allows the percentage ionised to be calculated at any given pH

Ampholytes and Zwitterions

[Perspect. Med. Chem. 1, 2007, 25]

What is pK_a?

- pK_a refers to the extent of ionisation of a compound
- For practical purposes, pK_a can be defined as the pH at which a compound is 50% ionised

$$pK_a = pH + log\left(\frac{[HA]}{[A^-]}\right)$$

Where K_a is the ionisation constant:

$$pK_a = -log_{10} K_a$$

$$HA \rightleftharpoons H^{+} + A^{-}$$
 $B + H^{+} \rightleftharpoons BH^{+}$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$
 $K_{a} = \frac{[H^{+}][B]}{[BH^{+}]}$

$$K_a = \frac{[H^+][B]}{[BH^+]}$$

Examples..

Acidic compounds: HA
 H
 + A

 $pK_a = 4.08$ (acidic)

Basic Compounds: B + H⁺

 BH⁺

Multiple Ionisable Centers

Compounds can have more than one pK_a:

Furosemide

 $pK_a = 10.23, 3.56$ (acidic)

Hydrochlorothiazide

 $pK_a = 9.98, 8.76$ (acidic)

Multiple Ionisable Centers

An extreme example from gene therapy:

Basicity decreases with increasing charge as it becomes more difficult to protonate each amine

Charges separate to minimise repulsion

pK_a:

Ampholytes and Zwitterions

 \odot Both an acidic and basic pK_a can exist within the same molecule:

Piroxicam – an ampholyte

pK_a: 5.41 (acidic) 1.89 (basic) Lomefloxacin – a zwitterion

pK_a: 8.95 (basic) 5.96 (acidic)

- \odot Ampholyte: Acidic pK_a >> Basic pK_a
- Zwitterion: Acidic pK_a << Basic pK_a

Why Should We Care?

The pK_a influences the key physical properties of a drug-like molecule:

Solubility

Lipophilicity

Permeability

Effect of pK_a on Aqueous Solubility

Aqueous solubility of an ionisable compound is highly pH dependent. The ionised form is usually more soluble, thus solubility increases with percentage ionised:

Diclofenac – pK_a 4.08 (acidic)

рН 3	pH 5	pH 7.4	pH 9
17 uM	>350 uM	>350 uM	>350 uM

Effect of pK_a on Aqueous Solubility

Aqueous solubility of an ionisable compound is highly pH dependent. The ionised form is usually more soluble, thus solubility increases with percentage ionised:

4,5-diphenylimidazole – pK_a 5.88 (basic)

pH 3	pH 5	pH 7.4	pH 9
> 350 uM	> 350 uM	84 uM	63 uM

Effect of pK_a on Lipophilicity

- Lipophilicity is a measure of how 'greasy' or lipophilic a compound is
- A more lipophilic compound is able to better permeate a physiological membrane than a less lipophilic (or more hydrophilic) one
 - Orally dosed compound the membrane of interest is the gut endothelium
- It is experimentally determined by partitioning a compound between two immiscible solvents, usually n-octanol and an aqueous buffer:

$$P = \frac{\left[\text{Neutral Species}\right]_{\text{Octanol}}}{\left[\text{Neutral Species}\right]_{\text{Aqueous}}} \qquad D = \frac{\left[\text{Neutral + Ionised Species}\right]_{\text{Octanol}}}{\left[\text{Neutral + Ionised Species}\right]_{\text{Aqueous}}}$$

Eventual LogD is dependent on the pH of the aqueous buffer and therefore the pK_a of the analyte..

Effect of pK_a on Lipophilicity

- An ionised drug molecule is more hydrophilic (and therefore less lipophilic) than the neutral compound.
- This is reflected in a lower LogD value at a pH where the compound is ionised:

Ketoconazole – pK_a 6.43, 3.64 (basic)

pH Partition Theory

pH variation in the human GI-tract

The pH of the environment an orally-dosed API experiences changes along the gastrointestinal tract.

	Surface area (m²)	pH (Fasted)	pH (Fed)
Stomach	0.11	1 - 3	4.5 - 5.5
Duodenum	0.09	5 - 6.5	4 - 6
Jejunum	60	6.5 - 7	5.5 - 6.5
Ileum	60	7 - 7.5	6.8 - 7.5
Colon	0.25	5.5 - 7	

Experimental Determination of pK_a

- Prediction packages are available for pK_a values but are only as good as the databases behind them
- \odot There are a number of experimental methods for determining pK_a:
 - Potentiometric titration
 - UV-spectroscopy
 - NMR

Sirius T3 Probe:
Overhead Stirrer
Thermometer
UV-dip probe
Titrant capillaries
pH electrode

Sirius T3 instrument

Potentiometric Titration

- Technique uses a pH electrode to measure the concentration of H⁺ ions in solution during a titration from low to high pH
- A blank titration is first carried out to characterise the pH electrode and derive a titration curve:
- At a pH below 3, water can be protonated:

$$H_3O^+ \iff H^+ + H_2O$$

At a pH above 10, water may be deprotonated to form the hydroxide ion:

$$H_2O \implies H^+ + OH^-$$

Potentiometric Titration

In the presence of an ionisable sample, such as atenolol below, the titration curve may display an additional horizontal region(s), indicative of pH buffering:

Atenolol - basic 2° amine

- This is subtracted from the blank titration to reveal the ionisation curve
- pK_a is calculated at 50%

Requires a relatively large sample quantity (2-5 mg)

UV-metric Titration

- The UV method offers a more sensitive technique provided:
 - The sample has a UV-chromophore
 - The site of ionisation is close (typically 3-4 bond lengths) to the chromophore
 - A change in ionisation will affect the extinction coefficient of the chromophore

UV-metric Titration

- A solution of the test compound is titrated over the chosen pH range and the UV absorbance is measured at each point
- The data is displayed as a 3D matrix of pH vs. absorbance vs. wavelength
- Evaluated mathematically using the Beer-Lambert law and Target Factor analysis

pK_a: 5.41 (acidic) 1.89 (basic)

Apparent pK_a values and co-solvents

- Experiments described thus far have all been performed in aqueous solution (0.15 M KCl)
- The sample must remain in solution throughout the titration to generate reliable data:
 - pH-metric titrations require ~1 mM sample concentration
 - UV-metric titrations require ~50 uM sample concentration
- This concentration cannot be obtained for very poorly soluble materials so alternate media must be used
- Titrations for such compounds are performed in varying ratios of a co-solvent: water and extrapolated to 0% co-solvent
 - Methanol is the most commonly used

Apparent pK_a values and co-solvents

- Propranolol precipitated out of solution during a pH-metric titration at a pH value approaching its pK_a
- Performing three consecutive titrations in decreasing co-solvent ratios (50, 40 and 30 wt.% methanol in water) enabled extrapolation to the aqueous value

- Most common extrapolation used is Yasuda-Shedlovsky
- Plotted as the reciprocal of the dielectric constant against the apparent pK_a + Log[H₂O]
- Aqueous pK_a is calculated using the dielectric constant of pure water (78.31 at 25 °C)

Apparent pK_a values and co-solvents

- $oldsymbol{artilde{>}}$ The gradient of the slope can indicate the type of measured pK $_{
 m a}$
 - The apparent pK_a of a base decreases with increasing co-solvent
 - The apparent pK_a of an acid increases with increasing co-solvent

- Potentiometric and UV-metric titrations are able to identify the type and value of a pK_a but nothing about the location of the ionisation
- In a compound with the multiple centres, the pK_a of a specific site may be of interest
- Onisation of a molecule introduces a localised charge to the structure and thus affects the chemical shift of adjacent atoms
- [●] ¹H, ¹³C, ¹⁹F NMR spectroscopy can be used

The compound is titrated across the desired pH range and an NMR spectrum is recorded at each pH point:

The shift in chemical shift is more pronounced on protons close to the site of ionisation:

Quinine - dibasic

- The chemical shift is plotted against the pH to construct the pK_a curve
- pK_a taken as the pH at the mid-point of the chemical shift difference

A simple example..

Ibuprofen is an NSAID often used to treat headaches

- Virtually insoluble in the fasted stomach (~pH 2)
- Eating will raise the pH of your stomach to ~pH 5, thus increasing solubility
- If you've had a heavy night: Fry-up first!

Conclusions

- The majority of compounds contain at least one ionisable centre
 - A knowledge of the extent of ionisation at these sites in the body leads to a greater understanding of physicochemical properties of a potential drug candidate
- A variety of experimental methods for the determination of ionisation constants are available and can determine:
 - The value of the pK_a
 - The type of the pK_a (acidic/basic)
 - The location of the ionisation event
- The importance of the ionisation event can be seen in everyday life

Acknowledgements

Richard Taylor

Justin Staniforth

Christine Prosser

Hayley Roy

Phil Gilbert

Ian Whitcombe

Matt Selby

Karl Box

Robert Taylor

Questions?

$$pK_a = -log\left(\frac{[H^+][A^-]}{[HA]}\right)$$

$$= - \left(\log \left[H^{+} \right] + \log \left[A^{-} \right] - \log \left[HA \right] \right)$$

$$= -\log \left[H^{+}\right] - \log \left[A^{-}\right] + \log \left[HA\right]$$

$$pH = - log [H^{+}]$$

$$pK_a = pH + log\left(\frac{[HA]}{[A]}\right)$$

