New Functionalised Organic Materials for Organic Light-Emitting Devices (OLEDs) and Lighting Technologies

Martin R. Bryce

Department of Chemistry, and Centre for Molecular and Nanoscale Electronics, Durham University, UK m.r.bryce@durham.ac.uk

SCI, London, April 09, 2014

- Brief introduction to OLED technology
- New fluorescent copolymers with intramolecular charge transfer
- White-light emission and SSL
- New iridium complexes and PhOLEDs

Organic Light Emitting Device (OLED) Structure

Organic layers (*ca.* 30-100 nm thick) are assembled by vacuum deposition or spin-coating from solution

480

0.3

Colours are defined by CIE coordinates of Chromaticity Diagram

Why OLEDs ?

Advantages and prospects of the technology

- Large area displays, including flexible displays
- Thin, lightweight panels
- High efficiency
- Bright screens with wide viewing angles
- Low voltage operation and fast switching times
- Durable and operational over a wide temperature range
- Low cost production

OLED Products in 2013

2013, Samsung flexible phone 'Youm'

2013, Audi 'The swarm'

2013, Panasonic Ultra HD 56 inch OLED TV

2013, LG 55 inch curved OLED TV

2013, Toshiba OLED wrist watch

Major Challenges of OLED Technology

For chemists, physicists and device engineers

- Synthesis of new emitters and charge-transport materials
- Fundamental understanding of charge-transport processes in thin films, especially at interfaces
- Simplify device architectures: new deposition techniques
- Choice of electrodes, encapsulation

For applications – flat panel displays, lighting, etc.

- High efficiency / brightness
- Colour purity and stability red, green, blue, white
- Long operating lifetimes
- High-tier niche markets for lighting

 – entrance lobbies, desk lights, architectural lighting, art galleries, museums, car dashboards, etc.

Reviews of white OLEDs: B. W. D'Andrade, S. R. Forrest, *Adv. Mater.* **2004**, *16*, 1585; K. T. Kamtekar, M. R. Bryce, A. P. Monkman, *Adv. Mater.* **2010**, *22*, 572.

Polyfluorene: An Efficient Blue Emitting Polymer

Linearly conjugated POLY- / OLIGO-FLUORENES:

- wide band gap (~ 3 eV)
- good charge carrier mobility
- highly fluorescent in solution
- (PLQY 60-80%) and thin films (30-40%)
- high thermal and electrochemical stability
- functionality can be introduced at C9
- · copolymers can be readily obtained

X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, S. S. Xiao, *Adv. Funct. Mater.* **2003**, *13*, 325.

- Brief introduction to OLED technology
- New fluorescent copolymers with intramolecular charge transfer
- White-light emission and SSL
- New iridium complexes and PhOLEDs

Dibenzothiophene-S,S-dioxide: A Highly Fluorescent Electron-Deficient Unit

I. I. Perepichka, I. F. Perepichka, M. R. Bryce, L.-O. Pålsson, Chem. Commun. 2005, 3397.

Fluorene–Dibenzothiophene-S,S-dioxide Co-oligomers

Chem. Commun. 2005, 3397.

Reversible Electrochemical Oxidation and Reduction

Solid-State Emission of FS Copolymers (Thin Films on Quartz)

Temperature Dependence of Solid-State Emission

Durham University

pFS-30 x:y = 70:30

>100% increased fluorescence intensity at low T
> Increased intensity of local excited state at low T

Conclusion: At low T torsions and dipole-dipole interactions which stabilise the ICT state are frozen out

J. Phys. Chem. B 2008, 112, 6557.

pFDBT-30 x:y = 70:30

- No ICT state emission when S replaced by DBT
- Increased vibrational resolution
- 20% increased fluorescence intensity at low T

Conclusion: ICT emission and broadening are due to F-S interactions (not aggregation)

Single-Polymer OLEDs with Colour-Tuneable Emission

p<mark>FS</mark>-30%

Devices: ITO / PEDOT:PSS/ FS copolymer / Ca/AI

- Increasing the content of **S** units in **FS** copolymer drastically improves the performance of the OLED
- Dual LE and ICT electroluminescence
- "Greenish-white" light
- External EL quantum efficiency 1.3%
- Increased colour stability compared to PFO
- Devices were not optimised

Adv. Funct. Mater. 2009, 19, 586.

Devices: ITO / PEDOT:PSS / FS copolymer / Ca/Al

Light output – Voltage data:

- ➢ Decrease in turn-on voltage for copolymers with ≥5% S content.
- \succ Light emission is observable at >3 V.
- Maximum brightness: pFS-30 ca. 4000 cd/m² at 6 V.

OLED Characteristics

Devices: ITO / PEDOT:PSS / FS copolymer / Ca/Al

Light output – Voltage data:

- ➢ Decrease in turn-on voltage for copolymers with ≥5% S content.
- \succ Light emission is observable at >3 V.
- Maximum brightness: pFS-30 ca. 4000 cd/m² at 6 V.

- Brief introduction to OLED technology
- New fluorescent copolymers with intramolecular charge transfer
- White-light emission and SSL
- New iridium complexes and PhOLEDs

Colour Tuning: Covalent Incorporation of TBT into Random Copolymer

ChemPhysChem. 2009, 10, 2096.

Probing Energy Transfer in pFS-30 – TBT Random Copolymer

PL spectra of copolymer films as a function of temperature. λ_{ex} 375 nm

Note the isoemissive point at ca. 550 nm, between the pFS-30 and TBT emission bands.

- Thermally-assisted energy transfer (exciton diffusion) occurs between pFS-30 regions and TBT moieties.
- As the temperature decreases the fraction of excitons that do not find a TBT trap site during their lifetime increases.

ChemPhysChem. 2009, 10, 2096.

Colour Tuning: Electroluminescence as a Function of Film Thickness

EL Devices: ITO / PEDOT:PSS / copolymer / Ba/Al

Thicker film: more re-absorption and more orange/red emission.

White light emitted by 40-60 nm thick films

Colour Tuning: Electroluminescence as a Function of Film Thickness

Thicker film: more re-absorption and more orange/red emission.

White light emitted by 40-60 nm thick films

White Electroluminescence from a Single Copolymer

Chemical modification to the copolymer affords pure white electroluminescence

EL Devices: ITO / PEDOT:PSS / copolymer / Ba/Al

OLED Products for Lighting

2010, A demonstrator lamp from the TSB-funded TOPLESS Project "Thin Organic Polymer Light-Emitting Semiconductor Surfaces"

Thorn Lighting – Durham University – Cambridge Display Technology

- Brief introduction to OLED technology
- New fluorescent copolymers with intramolecular charge transfer
- White-light emission and SSL
- New iridium complexes and PhOLEDs

Light-emitting Metal Complexes: Electrophosphorescent Devices

Energy

S₀ ground state

Electrophosphorescent Iridium Complexes

Prototype green emitter

M. E. Thompson, S. R. Forrest, et al., Appl. Phys. Lett. 1999, 75, 4

fac-lr(ppy)₃

Electrophosphorescent Iridium Complexes

(F₂-ppy)₂lr(acac)

(F₂-ppy)₂Ir(pic)

F

M. E. Thompson, S. R. Forrest, et al., Appl. Phys. Lett. 1999, 75, 4

fac-lr(ppy)₃

3

(ppy)₂lr(acac)

Ancillary ligands and substituents tune the colour

Electron-withdrawing substituents on phenyl ring lower the HOMO energy, leading to blue-shifted emission

S. Lamansky, et al., J. Am. Chem. Soc. 2001, 123, 4304

Electrophosphorescent Iridium Complexes

Why carbazole?

- Very stable electron-rich molecule
- Widely used as a hole-transporting unit
- Can be functionalised at positions 2, 3 and 9
- There were no reports of cyclometallation of carbazole derivatives, so fundamentally new chemistry would be explored

Chem. Eur. J. 2007, 13, 1423; J. Mater. Chem. 2012, 22, 6419

Fac-isomer

X-Ray molecular structure

Chem. Eur. J. 2007, 13, 1423

X = **a** H, **b** 4-CF₃, **c** 4-OMe **d** 5-CF₃, **e** 5-OMe The lower PLQYs for series **2** could be due to the increased carbazole contribution to the excited state resulting in decreased radiative decay.

C₆H₁₃

Electroluminescence spectra. Similar colour tuning between λ_{max} 506 (complex **1a**) and 638 nm (complex **2d**)

Improved blue electroluminescence is a major challenge

We have modified the benchmark blue emitter FIrpic

FIrpic

Flrpic

- Common "sky-blue" emitter for PhOLEDs
- Low solubility in organic solvents
- Devices usually fabricated by thermal evaporation which may degrade FIrpic

Key Design Features

- Mesityl groups for enhanced solubility to facilitate solution processing of PhOLEDs under mild conditions
- Ortho-Me groups will prevent biaryl conjugation and so blue emission should be retained

FIrpic-Mes₂

Devices: ITO / PEDOT:PSS / PVK:OXD-7:Ir complex / Ba/AI

- Spin-coated (solution-processed) single emitting layer
- Enhanced device performance using Flrpic-Mes₂ due to reduced concentration quenching

Chem. Mater. 2013, 25, 2352

Devices: ITO / PEDOT:PSS/ PVK:OXD-7:Ir complex / Ba/AI

Spin-coated (solution-processed) single emitting layer OXD-7 is an electron-transport material

Chem. Mater. 2013, 25, 2352

Optimized Devices: ITO / PEDOT:PSS / PVK:Ir complex / TPBi / LiF / AI

TPBi is a thermally-evaporated electron transport layer

EQE : Brightness: Current efficiency: Power efficiency: Turn-on (10 cd m⁻²): CIE at 12 V:

x 0.17

y 0.36

10.4% 4600 cd m⁻² 23.7 cd A⁻¹ 12.6 lm W⁻¹ 5 V

0.17, 0.36

Chem. Mater. 2013, 25, 2352

Conclusions

 New highly-fluorescent, fluorene copolymers have been synthesized and dual emission from local excited states and ICT states has been exploited in OLEDs and SSL

• New Ir(III) complexes of carbazole-based ligands give very high efficiency PhOLEDs, with color tuning by substituent effects (green to orange-red)

• New solution-processable FIrpic analogs are very promising sky-blue emitters in a simple PhOLED architecture

Acknowledgements

Synthesis:

Igor F. Perepichka Irene I. Perepichka Kiran T. Kamtekar Haying Li Kathryn C. Moss Mustafa Tavasli Yonghao Zheng Tom N. Moore Valery Kozhevnikov Photophysics: Lars-Olof Pålsson Fernando B. Dias Helen L. Vaughan Andrew Beeby Robert M. Edkins Vygintas Jankus

urham University Me Me Me """ | Ir \\\\\"

Theory: Mark A. Fox Crystallography: Andrei S. Batsanov Devices: Andrew P. Monkman Hameed A. Al-Attar Gareth C. Griffiths Khalid Abdullah Ben Lyons

Funding: EPSRC (UK) ONE NorthEast TSB (UK) Thorn Lighting / Zumtobel

obel Me

Collaborators: Cambridge Display Technology

