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® Afirstin class dipeptidyl peptidase-4 inhibitor (DDP-4)

® Novel Mechanism for treatment of Type Il diabetes

® Major advantages:
® Oral rather than injectable

® Unlikely to cause hypoglycemia
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* 9 Steps, 52% overall yield, >100Kg of sitagliptin prepared
* Two recrystallizations required for ee upgrade, lengthy, expensive
Hansen, K. B.,et al. Org. Proc. Res. Dev. 2005, 9 (5), 634
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The Aspirational Process
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Benefits of a biocatalytic process:

Eliminate enamine reaction and isolation of its product.

Eliminate the high pressure hydrogenation and specialized
equipment.

Eliminate heavy metal and carbon treatment to remove it.

Rh: 5760-510,000 per ounce, 54,061 5 year average

Provide higher enantioselectivity to eliminate upgrade crystallization
with yield loss.

Economics of biocatalytic process need to be better than those of
current process.
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I Equilibrium reaction that usually favors the ketone
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Equilibrium tends to favor the ketone;
much effort on shifting equilibrium
toward product amine reported:

° Pyruvate to lactate using LDH,

* Pyruvate recycled back to
alanine using AADH,

» These require co-factor recycling

(GDH or FDH).

* Pyruvate to acetaldehyde using
PDC,

* Amine product removed via resin —
also prevent product inhibition.

* Isopropylamine to acetone —
removal by distillation



Fundamental Problem...

slow slow slow RS ~CH3 RL can vary
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o toward pro-sitagliptin ketone!

* Many examples of multi-Kg deliveries on methyl ketones and
cyclic at Merck

* ATA-103 and ATA-113 broadest S-selective transaminases,

* ATA-117 broad R-selective transaminase,

* Accept variety of substrates, both donor and acceptor, but
small substituent cannot be larger than methyl group.
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Active Site Homolo

large pocket . L WEMWC e .« The large group fits in the large
' binding pocket, but not optimally.

* The small group (F;-phenyl) does
not fit in the small binding pocket.

+— cofactor

B [ | homology model subunits
[ large pocket

[ small pocket
[ ] PLP and catalytic residues

Directed Evolution Tools: Error prone PCR, site directed mutagenesis, Gene Shuffling, Modeling



Transaminase Diversity from CAPS Libs

Screen 18 plates
Sequence hits
26 mutations giving 1.25X-5X improvments.

10 times higher hit rate than random mutagenesis.
Synthesize new libraries
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Evolution for Process Fithess

— Generated, sorted (ProSAR), and recombined mutations across the whole protein.

® Successive rounds were screened under increasingly challenging conditions:
substrate loading, iPM concentration, co-solvent, pH and temperature

Round # land?2 3 4 5 6 7-9 10-11
S“b;;[ate 2 5 10 40 100 100 200-275
[iPM], M 0.5 0.5 1.0 1.0 1.0 1.0 1.0
30-40% 50%
cosolvent 5% DMSO | 5% MeOH | 5% MeOH | 10% MeOH | 20% DMSO
DMSO DMSO
pH 7.5 7.5 8.5 8.5 8.5 8.5 10
temp, °C 22 30 30 45 45 45 45

® Merck process development began with best round 5 variant.

— Biocatalyst evolution and process development then proceeded in parallel.
— Merck’s process changes were reflected in biocatalyst screening conditions.

Minor Enantiomer Never Detected




Head-to-Head Comparison of

Top variant of each round was tested Chiral purity of reaction product:
under identical conditions (vial reactions):
3
90 A\
50 g/L substrate Blue: Sitagliptin \I
80 1?/| g/L catalylst _ obtained with TA '|I
70 isopropylamine . i
< 10% DMSO Red.dS admme
<60 | pH8S5 standar
S50 | 45°C
[z
o 40 m15h
g 30 m5h
© 20 m24 h
10 ;
O .'-\.
1st 2nd 3rd 4th 5th 6th 7th 8th 9th _f %
Best variant of round




Summary and Current “Final”

» Atransaminase-based process for sitagliptin
synthesis was:

— first enabled by substrate walking and
structure-guided directed evolution
generating an activity that previously did
not exist,

— then improved 4-to-5-orders of
magnitude by state-of-the-art directed
evolution technology in parallel with
process development.

» Final catalyst contains 25 mutations.

» Of the 16 amino acid residues predicted to be
interacting with the substrate:

— 2 are catalytically essential,

— 7 were mutated in this catalyst (50%)



Monomer View

Active Dimer View

Accumulated mutations highlighted in purple



From NO Hits to Industrial
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Biocatalytic Asymmetric Synthesis of 2010 (Sitagliptin DhOSDhate)

Chiral Amines from Ketones Applied to REEN
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» Second phasing: free base, imine dimer, and ketoamide
- Feed in ketoamide as DMSO solution...to make 50%v/v in water

* pH control: pKa product <isopropyl amine (+ loss to vapor phase)

* pH probe fouling

- Feed in 4M iPr-amine in water with feedback loop
- On pilot scale...eliminate pH cart and use set charge rate 4M iPr-amine

« Acetone removal needed to drive equilibrium

- Use vacuum and nitrogen sweep
- Monitor acetone and conversion with ReactIR (calibrated)

* Enzyme removal during work-up (emulsion issues and regulatory)

- Ppt. enzyme with HCI then filter (kilo scale)
- Extract away enzyme with IPAc/IPA (pilot/factory scale)
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Acetone W%

Acetone

Pilot Plant Batches (30 kg or 90 kg)
® 150-375 torr

¢ 2-10 fps nitrogen sweep of headspace

® 2-4 m/s tip speed

® End of Reaction acetone concentration = <0.2%
® 96% Conversion

Highly scale dependant
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a defined “operating space” without having to re-file

Transaminase Factors

» DMSO/Water Ratio and split N\
» Agitation

» Vacuum

» Nitrogen Sweep

» pHrange

» Temperature How do we identify an operating range for

» Order of operations this many parameters that may/may not interact?
» Buffer strength

» Enzyme charge

» PLP charge

» iPr-amine initial charge

» Ketoamide addition rate J/




Assay Yield

A Error from replicates

Shapiro-Wilk test
W-value = 0.956

p-value = 0.463
A: Rxn Temp
B: pH

C: DMSO in Disso

D: DMSO in Reactor
E: IPA.HCI Stock Soln
F: Enzyme

G: PLP

B Positive Effects

B Negative Effects

» Fractional design: 16 exp. + repeats, 4 center points
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* Yield in a set time was used as output
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|Standardized Effect|
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19.00



F PLP (1g/L) F
o O iPr-amine HCI (0.5 equiv.)
N > N
N N 50% DMSO in water NP N
F LN g

N\< No Buffer F N\/<
50 °C, pH 9.5-10 :

170-275 giL CF, b _ 92% Assay yield CF,

feed in as DMSO Feed 4M iPr-amine (2 equiv.) >99.95% ee

solution over 3-4h over 10h

EOR: 97% sitagliptin, 3% ketoamide , 0.1% dimer, ~1% olefin

Key Features:

* No pH control needed...continuous 4M iPr-amine feed

» No buffering needed

» Reaction time cut to 12h from 21h (better stirring and higher pH)

» Vacuum (150 torr), nitrogen sweep (10 fps), and 4 m/s tip speed gives fast acetone removal

* Enzyme remains ~85% active at EOR...insensitive from pH 7-12 and up to 50 °C after aging

3 days in 50% DMSO.



Work-Up QbD

e Increasing IPA
process | >

*0wt% ~200wt% +~400wt%

: — Eliminated long filtration times
— Enzyme Gel in downstream J

extractions — affected settling time — More portable (less capital dependence
and removal of enzyme for enzyme removal)
— Requires polishing filters — Cleaner extraction interfaces throughout
workup

— Extremely poor flux
yp — General for all enzymes

» Simple: Add 0.5 reaction volume IPA then 0.5 IPAc (or any other alcohol/organic combo)




MRL & MMD

Enzyme present

Variable [ e ——"

45:55 IPA:IPAc

\ 4
50 wt% NaOH Water Water Waste
To Pure
r v ____%____v """ '":
|
Or / /
JE—— 7.
I Aqueous 1 Aqueous 1b :
|
R X SRS I : ~88.9% AY
. A\ 4 . &
30:70 IPA:IPAC Organic 3 . > I\Il\llg)Eci:z
Aqueous 3 ND PLP
Water
[T === 1 :
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. Org - 970 1
1 4 Y vs. ~5% in
: Aqueous 2 Aqueous 2b I ~0.6% AY previous filtration
L. —.. I 1. a based workup
A 4 A\ 4

~2.1% AY ~0.2% AY




NH, O NH, O
2 45% H3PO, 2
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Januvia
(Sitagliptin Phosphate Monohydrate)

98% vyield (vs. 96% in current)
Same physical properties
Acceptable purity profile

Recall: Current route charges crystalline free base
New route use IPA solution

* Higher yields and purity...can increase crystallization yields (less need to reject impurities)
* Crude IPA stream has only ketoamide, IPAc, and DMSO as new impurities
* Pure step tolerates up to 13% ketoamide (complete rejection). DMSO/IPAc rejected

<10 ppm protein by size exclusion HPLC and fluorescent detector




I Enamine Amide Free Sasg | API P.ure_
Hydrogenation | Crystallization | . Crystallization
oo 96% yield
84% yield
New
Ketoamide Work-up API Pure
Transamination (Enzyme Removal) Crystallization
90% vyield 98% vyield
3 * Through Process, 2 Steps
F NH. O * 88% Yield from Ketoamide
2 " * 7% Increase in overall yield
I '\l'\/N",-N » ~30% more productivity
H3PO ~ « PMI from 38 down to 31
= CFs « No special equipment needed
Januvi
(Sitagliptin Phosphate Monohydrate) * No metals

* No high pressure hydrogen
* Reneweable catalyst vs. mined






Activity
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Promiscuous Phase

Rnd 11



MeO l I I

ATA-117: 72% conv. ATA-117: 4% conv. ATA-117: 0% conv.

Rd 11: TA: 72% conv. Rd 11 TA: 28% conv. Rd 11 TA: 80% conv.
>99% ee

ATA-117: 0% conv.
Rd 11 TA: 56% conv.

NH> NH>

CF3 \““(Nlo
NH,

H
ATA-117: 0% conv. ATA-117:n.d. ATA-117: n.d. ATA-117: 100% conv.
Rd 11 TA: 99% conv., Rd 11 TA: 90% conv.  Rd 11 TA: 60% conv. Rd 11 TA: 100% conv.
67% yield, 99% ee

NH, NH, NH,
ATA-117: 0% conv. ATA-117: 0% conv. ATA-117: n.d.
Rd 11 TA: 56% conv. Rd 11 TA: 31% conv. Rd 11 TA: 9% conv.
NH, NH,
ATA-117: 17% conv. ATA-117: 10% conv. ATA-117: 17% conv.
Rd 11 TA: 95% conv., Rd 11 TA: 15% conv. Rd 11 TA: 100% conv.

95% yield, 99% ee

n.d. = not determined



NH;
Round 5TA E
CF; - CF,
60 °C, 24h
DMSO/ water
100% Conv
99% ee

- Sterically/ Electronically unfavourable

WH2 NH, NH,
Q/LCFS J@/k s J@ACF‘*
Br FaC HaC

100% Conversion, >98% ee




I O Round 6TA HN

Cl >
DMSO, 40°C
F iIPrNH, (4 equiv) F
PLP (1%), 48h 539
95% ee
o O Round 7TA (10g/L)
A OEt >
| DMSO (40%)
~-N

pH 8.5 buffer (60%)
50g/L 50°C 750,
>99% ee
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ATA 117
P1G5

R4 (Cambrex)

ATA 117
P1G5

R4 (Cambrex) )J\/\"/\/
ATA-117
—>
R4 (Cambrex)

ATA-117
P1G5

R4 (Cambrex)

Round 9TA

/) ",

/) ",

Q_
O
o

\

/”I'E,\lj/ Ph

20g/L dione
5g/L TA
GDH recycle

Cambrex R4 uses iPr-amine
80-95% vyield

97-100% ee
100% chemoselective

30-40% yield
Poor reactivity

Round 9TA could expand scope

And exhibit interesting chemoselectivity



Prior to 2008: Ketone to amine required 2-4 steps and ~2 weeks
Post 2008 (sitagliptin transaminase): Ketone to amine requires 1 step and 2 days

» Accelerated Lead Op...Fast prep of >99%ee amines from easy to access ketones
» High success rate for making R-amines, but S-amines limited to methyl and cyclic ketones
» Predictable stereochemical outcome (high degree of confidence on absolute stereochem.)

» Large late stage impact...multiple programs use transaminases

2008 top 200 branded drugs: 48/200 (24%) contain R-transaminase stereocenters
12/200 (6%) contain S-transaminase stereocenters
Combined: 60/200 (30%) could use a transamination

2008 top 200 generic drugs: 49/200 (24.5%) contain R-transaminase stereocenters
9/200 (4.5%) contain S-transaminase stereocenters
Combined: 58/200 (29%) could use a transamination
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i-PrNH, acetone :
Alk (R)"AlK
\_/ @/\

I-PrNH, acetone
i \_/ Hre
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Homology Model for ATA-117

homodimer

1 homolog 1
B homolog 2
B homolog 3
3 homology model

PLP in one active site

* Homology model ribbon structure showing
surface of one binding site

— Active sites are at subunit interfaces.

I [ | homology model subunits
[ large pocket
1 small pocket
[ PLP and catalytic residues




Co-Evolution of a Process and an Enzyme

Selling
Price

Output
Economic Savings ($million

Model /’ >roductivity (MT/

Process

Description

Basis for use of Process
Engineering Model to
Optimize Development by:

PC, CPDC, ADC/PAT, GPC

Factory Lab and OpS, GTO, EM,
R Scope §/° "l Procurement, Supply Chain,
\_/

Financial, Process Eng,
Codexis



N7 N=N
CN'/\(”
40 g/L CF3

Round 5TA (10g/L)
PLP (1g/L)
IPr amine (4 equiv.)

- N/\r/N‘N

10% MeOH
90% pH 8.5 buffer F 3 K,N\’<
45 °C, 20h o CF
solution in IPA 3
89% conv. 99.95%ee

Codexis: 40g/L ketoamide 1 in 10% MeOH with 10 g/L round 5TA

Challenges

* Oiling out of ketoamide 1
* Imine formation (1+3)

* pH control
* loss of isopropyl amine

* Conversion (89%)

Solutions

* 50% DMSO rather than 10% MeOH
* Add ketoamide/DMSO solution over 3h

 Control pH to 8.5 with 4M isopropyl amine

* Acetone removal



API Pure 2006: First FDA
Crystallization approved QbD Filing

Free Base
Crystallization

Enamine Amide
Hydrogenation

Assay Yield Control Point: Isolated Solid
% ee Isolated Solid * Purity
* Impurities * Particle Size
. * Yield

New
Ketoamide Work-up API Pure Thrpugh Process.
o — — L Reliant on Analytical
Transamination (Enzyme Removal) Crystallization
and PAT

Assay Yield » Assay Yield Isolated Solid

React IR e Enzyme e Purity

pH  Inorganics (NacCl) e Particle Size

» Crude Stream Solvent * Yield
(IPAc/IPA/DMSO/Water)  « Residual Enzyme (N/D)



» Very large operating space identified in Pilot Plant and Lab
85% conversion in 24h gave passing quality API

» Used the following productivity constraints as outputs in DOE to identify ideal operating space
- >93.0% conversion (correlated to assay yield)
- <12h reaction time
- <0.1% on any new impurities

» Acetone removal drives reaction kinetics and is scale dependant (S/V, agitation, vacuum, sweep)
- Ran DOE reactions “sealed” on multimax with condenser to be internally consistent

* Ran all experiments using same RM’s and one same 4-reactor multimax with continuous pH
control (4M iPr-amine feed)...set feed rate in factory



I > Initial Activity is not needed to evolve a manufacturing ready enzyme

» Design the enzyme to fit the process needs (or do it in parallel), i.e.
evolve the catalyst to fit the chemistry needs (or factory fit)

» Productivity: volumetric efficiency (>0.4M) and time cycles (<20h)

» Use extractions: Enzyme partitions based on density of organic layer
so use alcohols (IPA) to adjust organic density...a general work-up

» DOE works: Going from pH 8.5 to pH 9.8 cut time cycle in half (10h)

» Acetone removal is easy with vacuum and sweep, but you lose
IPr-amine as well

» Fixed charges of base can eliminate pH probes and continuous feedback



*Ketoamide solubility <1g/L in water and only 9-10g/L in DMSO/water
» Second phasing: free base, imine dimer, and ketoamide

* pH control: pKa product < isopropyl amine (+ loss to vapor phase)
* pH probe fouling

* Acetone removal needed to drive equilibrium

* Enzyme removal during work-up (emulsion issues and regulatory)

Bioanalytical Engineering
*Scalability

*Enzyme tracking and removal

) ; * Work-up (filter vs. extract)
*« Enzyme supply, storage, “assay

* Enzyme characterization

« Fit, time cycles, yields...productivity

e Through process QbD
Logistical

e Supply chain

e Capital Constraints

e Validation strategy
*PVE's
* Procurement

Analytical

*Reaction sampling

. ) * Rapid enzyme assay
* Capacity/Demand planning « Acetone monitoring (PAT)
* pH monitoring (PAT)

e Crude into pure stream (solvents)

No Precendence
Or Procedure for
New Chemistry
On Marketed Product

« Acetone removal (S/V vs. pressure and sweep)

Requlatory

*Enzyme Spec?

* Enzyme in “Final Step”

« APl characterization and stability
e Drug Product

« Filing Strategy

Lead Team from: Factory Site, Procurement, Regulatory, Analytical, Engineering (co-lead), Supply Chain




(LC/MS/MS) on the pro-sitagliptin ketone.

» Detectable initial activity is a prerequisite to directed evolution



(LC/MS/MS) on the pro-sitagliptin ketone.

» Detectable initial activity is a prerequisite to directed evolution

e Sitagliptin can be mapped to an R-selective transaminase (ATA-117):

F
F
NH; NH, O

QJ( R) ® =N,
S)\QDL SN § v




(LC/MS/MS) on the pro-sitagliptin ketone.

» Detectable initial activity is a prerequisite to directed evolution

e Sitagliptin can be mapped to an R-selective transaminase (ATA-117):

F
NH; F NH, O
QJ(R) ® N =N,
S)\QD F S CN@/N
L CFs /|

® Approach: Evolve an R-selective transaminase on a truncated substrate
that maps to established methyl ketone substrates, followed by further
expansion of small pocket to accommodate F;-phenyl :

NH, O
WN%N\N
s Kony

CF3 L



Structure Guidance for ATA-117

the ATA-117 active site would be needed.

®* No tertiary structure for this enzyme, nor any close sequence homolog was
available to identify binding site residues.



Structure Guidance for ATA-117

the ATA-117 active site would be needed.

® No tertiary structure for this enzyme, nor any close sequence homolog was
available to identify binding site residues.

® Structures of three distant homologous transaminases were reported.
— Between 24-30% sequence identity to ATA-117.

— Closest sequence identity among the three is <50%.

% homology




Structure Guidance for ATA-117

I the ATA-117 active site would be needed.

® No tertiary structure for this enzyme, nor any close sequence homolog was
available to identify binding site residues.

® Structures of three distant homologous transaminases were reported.
— Between 24-30% sequence identity to ATA-117.

— Closest sequence identity among the three is <50%.

% homology

® The three reported tertiary structures closely overlap, allowing a predictive
homology model to be built:



Initial Activity on Methyl Ketone

o 0 . NH2 10 g/L ATA-117 NH O , 9
MN/YN\ AN pH7.5 i )(R)\)J\N/YN\ A
l\/N\/<N room temp, 24 h I\/N\/<N

2 g/L CFs 0.5 M 4% reaction yield CFs

analytically perfect enantiopurity

® ATA-117is a Codexis catalogue product that was used for this experiment.

® |tisan unnatural, close homolog of a wild-type R-selective transaminase.



Establishing Activity on the Pro-

I — Site saturation libraries of large pocket mutations screened on the methyl ketone.
— ldentified multiple single mutants with improved activity.
— A key single mutation gave 11-fold greater activity over ATA-117.



Establishing Activity on the Pro-

— Site saturation libraries of large pocket mutations screened on the methyl ketone.
— ldentified multiple single mutants with improved activity.
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Establishing Activity on the Pro-

— Site saturation libraries of large pocket mutations screened on the methyl ketone.
— ldentified multiple single mutants with improved activity.
— A key single mutation gave 11-fold greater activity over ATA-117.

® Evolution round 1b:

— Combinatorial libraries of small pocket mutations with smaller amino acids, in
combination with the key large pocket mutation of round 1a were designed and
generated.

— A combination of three small pocket mutations, in combination with the key large
pocket mutation provided the first detectable activity on the pro-sitagliptin

substrate: . .
F F
o 0 . )Niz 10 g/L round 1 TA NHy O . )?\
N/\//N\N 5% DMSO/H,0 ® N/\//N\N
F N\/< 22°C,24h F N\/<
CF, CF;
2g/L 0.5M 0.5% conversion (LC, confirmed LC/MS/MS)

analytically perfect enantiopurity (>99% ee)



— Site saturation libraries of large pocket mutations screened on the methyl ketone.
— ldentified multiple single mutants with improved activity.
— A key single mutation gave 11-fold greater activity over ATA-117.

Evolution round 1b:

— Combinatorial libraries of small pocket mutations with smaller amino acids, in

combination with the key large pocket mutation of round 1a were designed and
generated.

— A combination of three small pocket mutations, in combination with the key large

pocket mutation provided the first detectable activity on the pro-sitagliptin

substrate. F F
F F
o 0 . )Niz 10 g/L round 1 TA NHy O . )?\
N/ﬁéN\N 5% DMSO/H,0 ® N/ﬁéN\N
F N\/< 22°C,24h F N\/<
CF, CF;
2g/L 0.5M 0.5% conversion (LC, confirmed LC/MS/MS)

analytically perfect enantiopurity (>99% ee)

No activity detected with the small pocket mutations in the absence of the key large
pocket mutation.



I — Generated, sorted (ProSAR), and recombined mutations across the whole protein.

® Successive rounds were screened under increasingly challenging conditions:
substrate loading, iPM concentration, co-solvent, pH and temperature.



I — Generated, sorted (ProSAR), and recombined mutations across the whole protein.

® Successive rounds were screened under increasingly challenging conditions:
substrate loading, iPM concentration, co-solvent, pH and temperature

Round # land?2 3 4 5 6 7-9
S“bgs‘;[ate 2 5 10 40 100 100
[iPM], M 0.5 0.5 1.0 1.0 1.0 1.0
cosolvent | 5% DMSO | 5% MeOH | 5% MeOH | 10% MeOH | 20% MeOH | 25% DMSO
pH 7.5 7.5 8.5 8.5 8.5 8.5
temp, °C 22 30 30 45 45 45




compounded fold improvement

Compounded Fold Improvements
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* Rapid, exponential catalyst improvement initially.

* Evolutionary pressure was modified as understanding of the system
improved.

* Improvements due to improved substrate binding, gene expression,
thermostability, in process stability, and presumably other unknown factors.
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*Fitness function
* Diversity generation
eSearch algorithm

Diversity generation
Search algorithm




Diversity Generation via CAPS

GI[114797240|REF|]YP_761201.1) 1-319 (0.2202)
4| , GI[169768191|REFXP_001818566.1} 1-320 (0.1229)
' GI[70986662|REF|IXP_748821.1)/ 1-320 (0.1365)
GI[13471580|REFINP_103146.1)/ 1-319 (0.1698)
Gl|86137542|REF|ZP_01056119.1) 1-310 (0.1786)

Gl[170737315|REF|YP_001778575.1)/ 1-328 (0.2171)
Gl[120405468|REF|YP_955297.1)/ 1-330 (0.2566)
S02965473/1-330 (0.2646)

(208) 208 220

250 269

Gl|114797240|REAYP_761201.1) 1-319 (198) FF ATEGAG N LEG IT
GI|120405468|REAYP_955297.1)/ 1-330 (208) R INC P NALPGIT
Gl|13471580|REFANP_103146.1)/ 1-319 (198) PAI LPGIT
GI[169768191|REFXP_001818566.1}/ 1-320 (199) ﬂ F T TEGSG LEGIT

Gl|170737315|REFAYP_001778575.1) 1-328 (207) EGPGFN LHGITR
GI[70986662|REFAXP_748821.1)/ 1-320(199) T TEGSG N NGI LRGIT

Gl|86137542REFZP_01056119.1) 1-310 (189) EG GENVFA NG LMGITR
S02965473/ 1-330 (208) EG G N LPGIT

TE
Consensus (208) ETPILLDGDGNLAEGPGFNWLVKDGKL TP RGVL GITRKTVFDIA ALGIEA L DV L

7'homologs, Conservative 576 mutations
36%-48% ——) - o c ,
. : diversity filter 6 plates
identity



Automated Parallel SOEing (APS)

location and sequence of primers. X and Y ., ATG.......... A T L TAA
correspond to mutagenic primers. ‘X_ ‘Y_ D
3
A script is written to dilute/mix primers, Y
template and reactions for a 1%t round of v
Splicing by Overlap Extension (SOE) PCRs
to generate the necessary fragments. A T
\'I
]
x

A second script is written to dilute/mix —
fragments for a 2" round of SOE PCRs e
to generate the full length constructs.

4
N

AW 4

AW 4

b &
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1%t Rd SOE PCR
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Fragment plate A

Oligo plate 1B

Fragment pIate B
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1%' Rd SOE PCR

2"d Rd SOE PCR

Library assembly

#96



1. Design variants

2. Run software —— | Assemble fragments
3. Order oligos
4. Prepare DNA il CAPS ;
Assemble constructs > | Pool constructs
MAPS 1
Plate and pick variants Plate and pick library
Assay
JVVVVVVV VV‘VVVl
—E = in parallel (plate) J l

=== = pooled (tube) Move mutations/variants forward




A Non-Standard Mode of Process Development

Lab Pilot Plant Factory

Revised approach used for 2"d Generation Process — where capital constraints
are set:

= Rahway Pilot
Barceloneta Plants

Factory Process <)

Engineering
Model



QbD

Critical Outputs (identified during scale-ups)

* Residual NaCl content...impacts API purity

« DMSO content...causes high ML loses in pure

* Enzyme residue...detectable down to 0.001wt.% unknown regulatory impact

Pure is run in IPA/water with phosphoric acid, hence need to know IPA/water content as well

Inputs Response
Factors Units Low High Responses Units Low High
A: Ext. 1 IPA:IPAc Ratio V:v% 40.0 50.0
B: Ext. 1 Org. Volume L/kg 4.0 7.0
C: Ext. 2 IPA:IPAC Ratio ViV 25.0 35.0 Na* m-eq. 0.0006 0.02
D: Ext. 2 Org. Volume L/kg 3.0 6.0 cr m.eq. 0.0006 0.06
E: NaOH Charge Amount Eq. rel. to HCI 0.0 1.2 DMSO m.eq. 0.44 2.06
F: Reaction Concentration g/L 160 210 Enzyme Wit N.D. N.Q.
Operational Factors Investigated Recast Parameters New Units Low High

A: Ext. 1 IPA:IPAc Ratio Same wt% 37.5 47.4

B: Ext. 1 Org. Volume Ext. 1 IPA Charge kg/kg KA 1.26 2.75

C: Ext. 2 IPA:IPAc Ratio Same wt% 231 32.7

D: Ext. 2 Org. Volume Ext. 2 IPA Charge kg/kg KA 0.59 1.65

E: NaOH Charge Amount Same Eq. rel. to HCI 0.0 1.14

F: Reaction Concentration See Rxn document - - -




Pure DOE Key Findings

Water Content

* Yield Response
» Completely dominated by final supernatant KF

* Mv Response
» PSD impacted by operational (vs. compositional) Concentration

parameters only.
IR
‘ Il

* Investigated further by additional DOE
Solvent Switch
Operation
| [Time Cyclé

lllj Il |

experimentation

» Disso Temp Response
« Strong function of solution composition

* Investigated further by solubility map with the help
of PAT group

* Form Response
 No statistical dependence on investigated factors Purity & Phys. Properties

* Investigated further by thermodynamic modeling of Water
water activity due to introduction of DMSO

* Thermodynamic modeling of water activity

— Unifac activity coefficient model - Implemented
in Mathematica or excel

e Critical water activity determined by CMSE using form turnover
studies (0.784@ 75°C)

IPA DMSO



Empirical Model

— Developed via regression of solubility data ® Model Error analysis indicates

— Applicable Range- prediction is £1.2°C.
* APl =11.2 — 28.4 wt%
* DMSO =0 - 3.05 eq. DMSO
* IPAc =0-0.50 eq. IPAC
* Ratio (H,O/(H,O +IPA)) = 28 — 32%

MK-0431 solubility in the solution of water, IPA, & DMSO
IPAc~ 1 wt%; DMSO ~ 8.6 wt%

T

‘0’
T 260
35 Water/(water+IPA) = 32, 30, 28 % (wt/wt)
D 240 - ETHE
g Equation: Exponential Growth ~ Ratio: 32 % Ratio: 30% Seed T [ﬂ:] 60
220 4 f=y0+a*b’™x y00021.651  y0[118.0900
g ad3.10420  a2.20500
‘= 200 A b1.0603 b1.0638
% Rsq 0.9995 Rsq 0.9995
@ 180 A
5
S 160
S a0
= 140 -
o
g 120 4
¥ 100 -
= 20
c 8041
g Ratio: 28% API [".’i"t'ﬁl]
& 60 yOO13.096
= a[]2.95730 g
S 40l b011.0581 Increased yield 2% "2
O Rsq 0.9950
c
(@] 20 T T T T T T T T T T
O 20 25 30 35 40 45 50 55 60 65 70 75

DMSO =5 wt%

Temperature °C




Ranges

» Ketone Loading: Up to 275¢g/L in <24h

» Co-solvent: 0 - 60vol% DMSO (or MeOH)
 Temperature: 30 - 60 °C

* Enzyme Loading: 3 - 4.5 wt.% (~0.01 mol%)
* pH Range: 9 — 11 (no buffer)

Operating

» Ketone Loading: 250 g/L in 10h

» Co-solvent: 50vol% DMSO

* Temperature: 50 °C

* Enzyme Loading: 4 wt.% (~0.01 mol%)
* pH Range: 9.7 — 10 (no buffer)

Kinetics

¢ 25 g Lth! productivity

» Ketone ~5 g/L solubility...mass transfer
limited kinetics

* Likely diffusion limited (dilute runs)



Resolution: An alternative to S-transaminase

NH»

R,

L

For ketone preparation

V\‘Uv

s

R-amine  NH,
amino acid
derived

5¢g/L Round 9TA
no PLP
20vol% acetone

>

0.1M TEA buffer
DMSO/water
40-60°C, pH 10-11

5¢/L Round 9TA
no PLP
20vol% acetone

0.1M TEA buffer
DMSO/water
40-60°C, pH 10-11



Performance vs. Process Targets

Parameter Target | ATA-117 1:’;?:::? If:::ir; crlntg Ro':j::' 11
substrate load, g/L 100 2 2 110 275
biocatalyst, g/L <5 10 10 5.5 6
reaction time, h <24 72 24 24 16
conversion, % >98 0 0.5 90 95
enantioselectivity, e.e. >99% -- >99% >99.9% >99.9%
Productivity (g/L.hr.g;,) 0 4.2*%10° 4 5-6

O 25,000-fold improvement from 15t to 11" round best variant.
O Infinite improvement from starting enzyme, ATA-117.




* Previous Transaminase capabiliies

NH, , o : IEIH:
kn"l"ﬂn, }3 R ‘Jl"ﬂH: kﬂ""ﬂH: ) :
L R=Ar, Alk A
NH, 0 l'_;“'ln
G — O — O
n=0-2

* New Transaminase capabiliies
O

k&j:-)” T | R"JLR" — k’*l-"'g:m)u

L L

* Most substrates are converted at higher substrate/ lower catalyst loadings
* Broader S-selective transaminase capabilities are currently under development



