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2. Methods  1. Introduction 

In the recent years many phenomena in 

engineering, physics, chemistry and other 

sciences can be described very successfully by  

using mathematical tools from Space-fractional 

PDEs such as fluid flow, finance and others. In 

this presentation we compare two different types 

of finite deference methods for solving space-

fractional PDEs. 
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7. Applications 
o Random walk model 

o Classical Brownian motion model 

o Levy fluctuations  model 
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3.  Aim 
The aim of this presentation is to 

present two types of finite difference 

methods for solving space-fractional 

PDEs. 

4. Equation 
Consider the space-fractional PDEs  (1<α<2) 

 

                    u(x,t)=f(x,t)     0<t<1 ,                       

 0<x<π   

u(t,0) = u(t,1) = 0 

u(0,x) =        (x) 

5.Results 
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8.Conclusion 
The convergence order of Diethelm method 

is           and the convergence order of 

Grünwald method is  O(h).  Grünwald’s 

method is better than Diethelm’s  method 

when 1 < α <2.   

6. Result discussions 
Diethelm method and Grünwald Method 

are both  unconditionally unstable. But 

the shifted methods are   both 

unconditionally stable.  

Further work s 
• To consider space-time-fractional PDEs 

• To consider the error estimates  of the different numerical methods 

for  fractional PDEs 

Here the Diethelm’s coefficient s are: Here the Grünwald’s coefficient s are: 
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