

Kamal Kanti Pal, Department of Mathematics, University of Chester, U.K. Email: <u>kamal_pal08@yahoo.co.uk</u>

1. Introduction

In the recent years many phenomena in engineering, physics, chemistry and other sciences can be described very successfully by using mathematical tools from Space-fractional PDEs such as fluid flow, finance and others. In this presentation we compare two different types of finite deference methods for solving spacefractional PDEs.

Finite difference methods for spacefractional PDEs.

2. Methods

Numerical Method for spacefractional PDEs

Grünwald Method

3. <u>Aim</u>

The aim of this presentation is to present two types of finite difference methods for solving space-fractional PDEs.

4. Equation

Consider the space-fractional PDEs $(1 < \alpha < 2)$ $\frac{\partial u(x,t)}{\partial t} - {}^{R}_{0} D_{x}^{\alpha} u(x,t) = f(x,t) \quad 0 < t < 1,$ $0 < x < \pi$

Here the Diethelm's coefficient s are:

$$\Gamma(2-\alpha)w_{kj} = \begin{cases} -1, & k = 0, \\ \alpha, & k = 1, j = 1, \\ 2-2^{(1-\alpha)}, & k = 1, j > 1, \\ 2k^{1-\alpha} - (k-1)^{1-\alpha} - (k+1)^{1-\alpha}, & k = 2, ..., j - 1., j \ge 3, \\ (\alpha-1)k^{-\alpha} - (k-1)^{1-\alpha} + k^{1-\alpha}, & k = j, j \ge 2, \end{cases}$$

6. Result discussions

Diethelm method and Grünwald Method are both unconditionally unstable. But the shifted methods are both unconditionally stable.

7. Applications

- o Random walk model
- Classical Brownian motion model
- Levy fluctuations model

1 2 3 4 5 6 x (Grunwald method)

Here the Grünwald's coefficient s are:

Diethelm Method

8. Conclusion

The convergence order of Diethelm method is $h^{(2-\alpha)}$ and the convergence order of Grünwald method is O(h). Grünwald's method is better than Diethelm's method when $1 < \alpha < 2$.

Further work s

To consider space-time-fractional PDEs

References

[1] F. Liu, P. Zhuang, V.Anh, I.Turner and K.Burrage, Stability and convergence of the deference methods for the space-time fractional advection diffusion equation, Applied Mathematics and Computation, 191, 12-20,

2007. .

[2] M. M. Meerschaertand C. Tadjeran, Finite deference approximations for two-sided space-fractional partial deferential equations, Applied Numerical Mathematics, 56, 80-90, 2006.

[3] H. W. Choi, S.K.Chung and Y.J.Lee, Numerical solutions for space fractional dispersion equations with nonlinear source terms, Bull. Korean Math Soc. 47, 1225-1234,2010.

[4] R. Gorenflo and F. Mainardi, Approximation of Levy-Feller Diffusion by Random Walk, Journal for Analysis and its Applications Volume 18, No.2, 231-246, 1999.
[5] S.Shen and F. Liu, Error analysis of an explicit finite deference approximation for the space fractional diffusion equation with insulated ends, ANZIAM J, 46(E) pp. C871-C887, 2005. • To consider the error estimates of the different numerical methods for fractional PDEs

Acknowledgements:

Thanks to Dr Yubin Yan, Professor Neville J.Ford and Mr M. A. Malique for their help and advice, University of Chester, U.K.