
v  Only previous example of organocatalytic P(V) 
phosphate transfer in oligonucleotide synthesis 
(Scheme 1)1,2.  

 
 
 
 

v  Rate studies by Effimov et al.1,2 demonstrated 4-
DMAP-N-oxide to be most efficient catalyst. 

v  Steric hinderance around reactive O-centre resulted 
in decreased catalyst activity. 

v  Initial reactions focused on phosphorylation of 
serine derivative using catalysts described by 
Effimov et al.1,2  

Figure 2 – Serine phosphorylation: further catalyst evaluation.   
Conversion determined by crude 1H NMR. 

v Electron withdrawing 2-aryl substituents found to 
accelerate reaction rate. Catalyst 2j proved most 
efficient (97% conv. after 8 h).  

v Base screen identified pentamethylpiperidine as 
optimal for this process. 

 

Table 1 – Serine phosphorylation: base evaluation 

 
 

v  Selective mono-phosphorylation of heptapeptide 
v  Use of novel ‘xylenyl phosphoryl choride’ for facile, 

tyrosine compatible deprotection (H2, Pd/C)  
v  Moderate yield (49% + 21% SM recovery) 

v  Novel example of a synthetic Tyr Kinase mimetic 
v  Aim to utilise this methodology to develop analagous 

catalytic cycle for ‘tagging’ of phosphates.  

4.	  Synthe*c	  ‘Tyr	  kinase	  mime*c’	  

2.1	  Serine	  Phosphoryla*on	  

2.2	  Threonine	  Phosphoryla*on	  
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v  Catalyst 2j again identified as optimal catalyst.  
v  Proton Sponge© most efficient base in this process. 

v  Early indication of base controlling substrate 
selectivity. 

 
v  NEt3/PMP/DBU resulted in quantitative conversion 

within 1 h.  

 
                                

v  Choice of base governs substrate selectivity 

 
 
 

           Figure 3: Rate of phosphorylation with propylene oxide 
 

v  Propylene oxide should allow selective phosphorylation 
of serine over threonine/tyrosine. 

 
 
 

             Figure 3: Rate of phosphorylation with pentamethylpiperidine 
 

v  Pentamethylpiperidine should allowed selective 
phosphorylation of tyrosine over threonine/serine. 
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Abstract	  

	  	  
	  
	  
	  
The	  development	  of	  4-‐dimethylamino-‐N-‐oxide	  (DMAP-‐N-‐oxide)	  derived	  kinase	  mime=cs	  for	  selec=ve	  phosphoryla=on	  of	  hydroxyl-‐containing	  amino	  acids	  
is	  reported.	  The	  reac=on	  proceeds	  in	  good	  to	  very	  good	  yields	  and	  good	  levels	  of	  selec=vity	  for	  Ser	  vs.	  Thr	  vs.	  Tyr	  are	  achievable.	  Notably,	  reac=on	  rates	  
and	   substrate	   selec=vi=es	   are	   highly	   dependent	   upon	   the	   choice	   of	   base	   and	   preliminary	   results	   indicate	   that	   increased	   selec=vity	  may	   be	   achieved	  
through	  fine-‐tuning	  of	  the	  2-‐aryl	  subs=tuent	  of	  the	  catalyst.	  
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Figure 1 – Serine phosphorylation: initial catalyst evaluation 
                  Conversion determined by crude 1H NMR. 
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3.	  Comparison	  of	  	  
Phosphoryla*on	  rates	  
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