
v  Only previous example of organocatalytic P(V) 
phosphate transfer in oligonucleotide synthesis 
(Scheme 1)1,2.  

 
 
 
 

v  Rate studies by Effimov et al.1,2 demonstrated 4-
DMAP-N-oxide to be most efficient catalyst. 

v  Steric hinderance around reactive O-centre resulted 
in decreased catalyst activity. 

v  Initial reactions focused on phosphorylation of 
serine derivative using catalysts described by 
Effimov et al.1,2  

Figure 2 – Serine phosphorylation: further catalyst evaluation.   
Conversion determined by crude 1H NMR. 

v Electron withdrawing 2-aryl substituents found to 
accelerate reaction rate. Catalyst 2j proved most 
efficient (97% conv. after 8 h).  

v Base screen identified pentamethylpiperidine as 
optimal for this process. 

 

Table 1 – Serine phosphorylation: base evaluation 

 
 

v  Selective mono-phosphorylation of heptapeptide 
v  Use of novel ‘xylenyl phosphoryl choride’ for facile, 

tyrosine compatible deprotection (H2, Pd/C)  
v  Moderate yield (49% + 21% SM recovery) 

v  Novel example of a synthetic Tyr Kinase mimetic 
v  Aim to utilise this methodology to develop analagous 

catalytic cycle for ‘tagging’ of phosphates.  
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  Phosphoryla*on	
  

Acknowledgements	
  +	
  References	
  

v  Catalyst 2j again identified as optimal catalyst.  
v  Proton Sponge© most efficient base in this process. 

v  Early indication of base controlling substrate 
selectivity. 

 
v  NEt3/PMP/DBU resulted in quantitative conversion 

within 1 h.  

 
                                

v  Choice of base governs substrate selectivity 

 
 
 

           Figure 3: Rate of phosphorylation with propylene oxide 
 

v  Propylene oxide should allow selective phosphorylation 
of serine over threonine/tyrosine. 

 
 
 

             Figure 3: Rate of phosphorylation with pentamethylpiperidine 
 

v  Pentamethylpiperidine should allowed selective 
phosphorylation of tyrosine over threonine/serine. 
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The	
  development	
  of	
  4-­‐dimethylamino-­‐N-­‐oxide	
  (DMAP-­‐N-­‐oxide)	
  derived	
  kinase	
  mime=cs	
  for	
  selec=ve	
  phosphoryla=on	
  of	
  hydroxyl-­‐containing	
  amino	
  acids	
  
is	
  reported.	
  The	
  reac=on	
  proceeds	
  in	
  good	
  to	
  very	
  good	
  yields	
  and	
  good	
  levels	
  of	
  selec=vity	
  for	
  Ser	
  vs.	
  Thr	
  vs.	
  Tyr	
  are	
  achievable.	
  Notably,	
  reac=on	
  rates	
  
and	
   substrate	
   selec=vi=es	
   are	
   highly	
   dependent	
   upon	
   the	
   choice	
   of	
   base	
   and	
   preliminary	
   results	
   indicate	
   that	
   increased	
   selec=vity	
  may	
   be	
   achieved	
  
through	
  fine-­‐tuning	
  of	
  the	
  2-­‐aryl	
  subs=tuent	
  of	
  the	
  catalyst.	
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Figure 1 – Serine phosphorylation: initial catalyst evaluation 
                  Conversion determined by crude 1H NMR. 
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