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The development of 4-dimethylamino-N-oxide (DMAP-N-oxide) derived kinase mimetics for selective phosphorylation of hydroxyl-containing amino acids
is reported. The reaction proceeds in good to very good yields and good levels of selectivity for Ser vs. Thr vs. Tyr are achievable. Notably, reaction rates
and substrate selectivities are highly dependent upon the choice of base and preliminary results indicate that increased selectivity may be achieved
through fine-tuning of the 2-aryl substituent of the catalyst.
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