

Health and nutritional trends – obesity, nutritional profiling and the omega-3 and omega-6 fatty acid balance

Tom Sanders Professor of Nutrition & Dietetics Nutritional Sciences Research Division King's College London

• Fat quantity – obesity

• Fat quality – cardiovascular disease

Obesity Trends* Among U.S. Adults BRFSS, 1991, 1996, 2003

(*BMI ≥30, or about 30 lbs overweight for 5'4" person)

• Storing fat in the wrong place

 Metabolic syndrome

Fat patterning associated with metabolic syndrome

Relative Risk of Diabetes with increasing BMI

Obesity and metabolic syndrome

 Obesity contributes to causing metabolic syndrome

• Physical activity is protective

 A diet high in rapidly absorbed carbohydrate (both starch and sugar) makes metabolic syndrome worse **Figure 1** Numbers of people with diabetes (in millions) for 2000 and 2010 (top and middle values, respectively), and the percentage increase. Data adapted from ref. 2.

• Energy Balance = Intake - Expenditure

Is obesity a genetic disorder?

• Precocious obesity under the age of 5 usually has a genetic cause

 Common obesity in teenagers and adults is life-style acquired

Leptin Therapy: From mice to humans

Left: Ob mouse 6 weeks post leptin therapy Right: Ob mouse 6 weeks post saline injections

Murphy, J. E. et al. (1997). Proc Natl Acad Sci U S A 94(25): 13921-6.

A child with a mutation in the leptin gene before and after leptin therapy

Farooqi, I. S. and S. O'Rahilly (2004). Recent Prog Horm Res 59: 409-24.

Causes of common obesity

- Access to high energy density food
- Low levels of physical activity

Energy density (ED) = kcal/100g

•a major factor in appetite control

•diets based on lower ED foods -> less weight gain risk

<u>Diet</u> ED <150 kcal/100g appears desirable for weight control

Effect of fat additions on energy density

Total fat consumption has not increased during the obesity epidemic

Per capita fat consumption in the UK

Source: UK Nation Food Survey

National Dietary and Nutritional Survey

	Men			Women
	1986/87	2000/2001	1986/87	2000/2001
Energy (MJ)	10.3	9.72	7.05	6.87
Fat % food energy	40.4	35.8	40.3	34.9
SFA	16.5	13.4	17	13.2
Trans	2.2	1.2	2.2	1.2
PUFA	6.2	6.4	6.1	6.3

The fat gap

- Obesity is rapidly increasing globally
- No evidence from N America or Europe to show fat intakes are increasing (the opposite is true)

 But vegetable oil production has increased markedly

Slow Food

High skill base, time consuming, "food" focused

Convenient social

SCRATCH COOKING	COMPONENT COOKING	READY MEALS	TAKE-AWAYS	SNACKING 'ON THE HOOF'	DELIVERY	QSR	RESTAURANT
e.g. primary products, traditional grocery	e.g. prepared vegetables, prepared meat/fish, sauces, pizza		Krc	e.g. Sandwiches, Sushi	Pizza PHut	M	

Physical activity

Physical inactivity

Photo: Avi Gerver

Quality of fat

All-*cis* unsaturated fatty acids

Saturated fatty acids lauric, myristic and palmitic

Trans fatty acids

Types of Fatty Acid

Saturated

Monounsaturated

Polyunsaturated

Dietary source	n-6 series	n-3 series	Dietary source
	18:2n-6	18:3n-3	
Vegetable oils	Linoleic ↓	α–Linolenic ↓	Vegetable oils
	18:3n-6	18:4n-3	
	Gamma-linolenic	Stearadonic	
	\downarrow	\downarrow	
	20:3n-6	20:4n-3	
	Dihomogammalinolenic \downarrow	\downarrow	
	20:4n-6	20:5n-3	
Fish, meat	Arachidonic	Eicosapentaenoic \downarrow	Fish oil
		22:5n-3	
		\downarrow	
		22:6n-3	
		Docosahexaenoic	Fish oil, offal

Effect of partial hydrogenation

Cis monounsaturated Trans Fatty Acid

Raises melting point and improves organoleptic properties

Effect of hydrogenation on rapeseed oil

The Heart Attack

Blood cholesterol as a risk factor for CHD

- Elevated LDL and low HDL cholesterol are involved in the atherogenic process
- Differences in saturated fatty acid intake explain 2/3rds of the variation in plasma LDL cholesterol between populations
- Intervention trials using drugs have shown
 - 1) that lowering LDL cholesterol decreases risk
 - 2) that increasing HDL decreases risk

Predicted changes in the ratio of serum total to HDL cholesterol and in LDL- and HDL-cholesterol concentrations when carbohydrates constituting 1% of energy are replaced by different fatty acids

Mensinck et al. Am J Clin Nutr 2003; 77: 1146-1155

Comparative effect of different plant derived fatty acids on LDL and HDL cholesterol

- Saturated fatty acids (lauric, myristic and palmitic) raise LDL cholesterol
- Oleic acid is neutral
- Linoleic acid and linolenic acids slightly lower LDL cholesterol
- Trans unsaturated fatty acids raise LDL cholesterol and lower HDL cholesterol

CARDIOVASCULAR MORTALITY IN EUROPE (WHO, 1995)

Persons under age 65

Relationship between serum cholesterol and CHD incidence in the Seven Countries Study and smoking (%)

Changes in weekly oil and fats consumption in the UK 1992-2000

Death rates from CHD, stroke and all other diseases of the circulatory system, people aged under 75, 1970-1999, England, with Our Healthier Nation milestone and target

Risk of CHD according to changes in the intakes of different fatty acids Nurses Health Study

Risk of fatal CHD is decreased the intake long chain n-3 fatty acids and not affected by the ratio

Hu et al. JAMA 2002

Intake of long chain n-3 fatty acids in 41,578 Japanese men and women and risk of CHD over 10 years

Iso et al. Circulation 2006;113:195-202.

Data from the Nurses Health Study suggests linoleic acid decreases risk of CHD

Hierarchy in Scientific Evidence

The Women's Health Initiative

- 48,835 postmenopausal women were randomized to dietary modification (40% or a comparison group (60%)
- Dietary fat intake was 8.1 % energy lower at year 6
- The difference in weight between the control and intervention group after 8 years was only1.3 kg
- The intervention had no significant effect on incidence of cancer, heart disease or diabetes

Influence of decreasing fat or exchanging saturated fatty acids for polyunsaturated fatty acids on cardiovascular mortality Hooper et al. *BMJ* 2001;322:757-763 (31 March)

DART¹⁷

London corn and olive (corn)²⁵ London corn and olive (olive)²⁵ London low fat²⁶ Minnesota coronary survey²⁹ MRC soya trial³⁰ Oslo diet-heart study³³ STARS³⁷ Veterans admin centre trial⁴¹ Veterans diet and skin cancer⁴²

Pooled

Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review Review of studies published up to 2002

- Results The pooled estimate showed no strong evidence of reduced risk of total mortality (relative risk 0.87, 95% confidence interval 0.73 to 1.03) or combined cardiovascular events (0.95, 0.82 to 1.12) in participants taking additional omega 3 fats.
- **Conclusion** Long chain and shorter chain omega 3 fats do not have a clear effect on total mortality, combined cardiovascular events, or cancer.

Hooper et al. BMJ 2006 epub 24 March 2006

RCT data, marine omega 3 fats only									
Burr (DART) 1989	93/1015	131/1018							0.71 (0.55 to 0.92)
Kaul 1992	0/58	1/49		←					0.28 (0.01 to 6.78)
Leaf 1994	0/275	2/276		← ∎					0.20 (0.01 to 4.16)
Sacks (HARP) 1995	0/41	1/39		←				-	0.32 (0.01 to 7.57)
Eritsland 1996	8/317	6/293							1.23 (0.43 to 3.51)
Singh 1997	14/122	13/59			-	-			0.52 (0.26 to 1.04)
GISSI-P 1999	477/5665	554/5658			-	-			0.86 (0.77 to 0.97)
Johansen 1999A	1/250	3/250							0.33 (0.03 to 3.18)
von Schacky 1999	1/112	2/111		<	-				0.50 (0.05 to 5.39)
Brox 2001	0/80	1/40		←∎──					0.17 (0.01 to 4.05)
Nilsen 2001	11/150	11/150							1.00 (0.45 to 2.24)
Burr 2003	283/1571	242/1543				-			1.15 (0.98 to 1.34)
Subtotal (95% CI)	9656	9486			-	•			0.86 (0.70 to 1.04)
Total events: 888 (high omega 3 fats),	967 (low omega 3/control)								. ,
Test for heterogeneity: χ ² =19.98, df=11, P=0.05, / ² =44.9%									
Test for overall effect: z=1.542, P=0.12									
RCT data, α linolenic acid only									
Borchgrevink 1966	10/100	14/100		-		<u> </u>			0.71 (0.33 to 1.53)
Natvig 1968	43/6716	40/6690							1.07 (0.70 to 1.64)
Singh 1997	16/120	13/59		_		+			0.61 (0.31 to 1.17)
Bemelmans 2002	3/109	1/157					-	-	4.32 (0.46 to 41.00)
Subtotal (95% CI)	7045	7006							0.87 (0.57 to 1.34)
Total events: 72 (high omega 3 fats), 58 (low omega 3/control)									. ,
Test for heterogeneity: χ ² =4.27, df=3, P=0.23, / ² =29.8%									
Test for overall effect: z=0.62, P=0.54									
Cohort data									
Dolecek 1991	72/1251	99/1307				-			0.76 (0.57 to 1.02)
Erkkila 2003	5/132	16/133							0.31 (0.12 to 0.83)
Hu 2003	49/491	77/487							0.63 (0.45 to 0.88)
Subtotal (95% CI)	1874	1927			-				0.65 (0.48 to 0.88)
Total events: 126 (high omega 3 fats),	192 (low omega 3/control)						1	10	, , ,
Test for heterogeneity: x ² =3.13, df=2, P=0.21, / ² =36.1%			0.	1 0.2	0.5	1 2	5	10	
Test for overall effect: z=2.81, P=0.005		Fa	Favours high			Favour	s low		
-				mega 3			ome	ega 3	

Fat and heart disease

- Decreasing the intake of fat has not been shown to reduce risk of heart disease
- But changing the type of fat consumed probably reduces risk of heart disease.
 - Replacing saturated and trans fatty acids with unsaturated fatty acids
 - Increasing the intake of n-3 fatty acids
 - Increasing the intake of linoleic acid

Conclusion

Fat needs to be consumed in moderation to avoid obesity

 Attention needs to be paid to the fatty acid profile in order to prevent cardiovascular disease

Nutrient Profiling

- A scheme developed by the UK Food Standards Agency to classify foods into "good" and "bad" categories is now spreading to other countries
- To be used as a management tool
 - To provide front of pack labelling
 - To regulate TV advertising of food targeted at children
 - To control the types of food that can be used to make up school meals
 - To regulate health claims

UK Food Standards Agency Multiple Traffic Light

High Fat is >20g/100g High Sat Fat >5g/100g

Using this definition all oils would fall into the high category

Ideal fatty acid profile of vegetable oil

- <15% saturated fatty acids
- 15% polyunsaturated fatty acids
 - n-6/n-3 ratio <10:1
- 70% monounsaturated
- Trans <1%