

Characterisation and photoelectrochemical properties of titania nanotubes

G. Dale; J. Hamilton; P. Dunlop, T. Byrne

Nanotechnology and Integrated BioEngineering Centre (NIBEC), University of Ulster at Jordanstown, Shore Road, Newtownabbey, Northern Ireland, UK, BT37 0QB

www.nibec.ulster.co.uk

Overview of presentation

Background to the study

Aims and Objectives

Experimental

Results and Discussion

Summary

Photoelectrochemistry

Diagram adopted from Sato (1998)

Titanium Dioxide

- Fujishima & Honda (1972) reported photo-splitting of water using n-type single crystal rutile under UV irradiation.
- Titanium dioxide is reported to be a good photocatalyst, it is photostable, chemically stable, insoluble in water, readily available and non-toxic. The wide bandgap energy gives a large potential window for redox reactions, however, it means UV activation.
- Zwilling et al(1999) first reported the formation of self organised titania nano-stuctures following anodisation of Ti in F containing electrolyte.

Fujishima, Honda. Nature 1972, 238, 37.

Zwilling, Aucouturier, Darque-Ceretti, Electrochimica Acta 45 (1999) 921–929

Proposed growth mechanism

Adapted from: J. Zhao et al, Solid State Communications 134 (2005) 705-710

Aim of this work

To examine the growth of titania nanotubes by the anodisation of Ti metal in the presence of fluoride and to determine the current-potential response under illumination and the photocatalytic properties.

Objectives

- •Anodise Ti metal in the presence and absence of fluoride
- •Characterise using surface analytical methods

Determine the current-potential response of the electrodes under illumination
Determine the photocatalytic properties of the material

Experimental

Electrochemical cell for anodisation

Compact oxide layer

Electrolyte: 1 M H₂SO₄

Anode: Titanium foil diameter of 10 mm (0.785 cm²)

Cathode: Pt foil diameter 20 mm

Potential applied: constant 20 V dc

Time: 30 min

Current: starts around 18 mA and drops to approx 6 mA

Anneal: 450°C in air for 1 h (ramp 5°C min⁻¹ up and down)

Titania nanotubes

Electrolyte: $1 \text{ M Na}_2\text{SO}_4 + 0.13 \text{ M NaF}$

Anode: Titanium foil diameter of 10 mm (0.785 cm²)

Cathode: Platinum foil diameter 20 mm

Potential applied: Constant 20 V dc

Time: 4 h

Current: starts at 20 mA and drops to steady 1 mA

Anneal temp: Range temperatures $350^{\circ}C - 750^{\circ}C$ in air for 1 h (ramp 5°C min⁻¹ up and down)

Macak, J; Sirotna, K; Schumki, P. Electrochemica Actu, (2005), v 50, 18, pp 3679 - 3684

SEM

FEI Quanta 200: tungsten filament electron source, accelerating voltage 20 kV, 42 pA current, spot size 2.5, chamber pressure 1.6 x 10⁻⁶ Torr.

XRD

Glazing incidence X-ray diffraction was used to determine the crystalline phase of the TiO_2 both before and after annealing using glazing incidence XRD (Bruker D8 Discover X-ray Diffractometer, source fixed at 0.75 degree).

Photoelectrochemistry

One compartment cell with quartz window

Pt paddle CE and SCE RE

Electrolyte: 0.1 M NaClO₄ (air sparged, pH 4.5)

Illumination source 1 kW Xe with AM1.0 filter for solar simulation

Light intensity measured using Jobin Yvvon spectral radiometer

Potentiostatic control using PG30 Autolab

Photo-cell set-up

Photocatalytic properties

Model pollutants were formic acid and phenol

Illumination was provided by 1 kW xenon with AM1.0 filter

Cell volume was 10 cm⁻³

Experiments were undertaken at open circuit and with applied bias.

Concentration of formic acid was determined by ion exclusion HPLC

Concentration of phenol was determined by reverse phase HPLC

Photocatalytic Setup.

Results and Discussion

SEM of self –organised titania nanotubes (Top View)

Uniform growth of aligned titania nanotubes Circular structures with mean internal diameter ca. 90 nm and wall thickness ca. 10 nm

SEM of nanotubes mechanically cracked from support (Side View)

Mechanically cracked sample reveals length ca. 550 nm Note periodic ring structure along length

SEM of nanotubes mechanically cracked from support (Bottom View)

Bottom view of mechanically cracked sample reveals tubes are capped by compact oxide layer which appears as the negative image of pore shape

TUBE DIAMETER VS POTENTIAL

AFM

AFM : Tapping mode

AFM : Tapping mode

Photoelectrochemical Characterisation

Linear sweep voltammetry provides a fast and effective means of evaluating the photoelectrochemical properties of electrode materials

LSV for Compact oxide in dark

J (A cm^2)

XRD analysis of compact oxide film pre- and post- anneal

XRD analysis of nanotubes pre- and post- anneal

Potential (V)

XRD DATA VS ANNEAL TEMP

	Ratio	
	Anatase /	Rutile
Annealing		
Temperature (ºC)	Anatase	Rutile
250	0	0
350	1	0
450	1	0
550	0.63	0.37
650	0.56	0.43
750	0.17	0.83

Photocatalytic degradation of pollutants (Formic Acid + Phenol)

Rate (x10⁻² mM min⁻¹ cm⁻²)

Photocatalytic degradation of phenol

Time (mins)

Phenol

Electron Transport

Figure: Visual representation of electron transport in (a) degussa P25 film and (b) nanotubes

De Jongh & Vanmaekelbergh, Physical review letters, v77, 1996, 3427 - 3430

Summary

Self-organised titania nanotube arrays can be produced by anodising Ti metal in the presence of fluoride.

The as-prepared NTs are amorphous and have a relatively poor photoelectrochemical response

Annealing the NTs results in a dramatically improved photocurrent response

Annealed NTs show better photocatalytic efficiency when compared to P25 films under applied bias

Acknowledgements

Dept of Employment and Learning Northern Ireland

Technical staff of SE, University of Ulster

Degussa for supplying free sample of P25