

Peter Skabara

Electrochemical behaviour of multi- redox-active conjugated polymers

Figure 2. Flexible solar cell technology incorporated into a military tent

Chem. Commun., 2002, 2408

J. Mater. Chem., 2005, **15**, 4783

Bryce (Synth. Met., 1991, 39, 397)

Roncali (Adv. Mater., 1998, 10, 541; J. Phys. Chem. B, 1998, 102, 7776)

Underhill (J. Org. Chem., 1997, 62, 3098)

Skabara (J. Mater. Chem., 1998, 8, 1719)

Skabara (J. Mater. Chem., 1998, 8, 1719)

Müllen, J. Mater. Chem., 1995, 5, 1529

Yamamoto (Chem. Commun., 1999, 515)

TMTSF and the Bechgaard salts

See: Acc. Chem. Res., 1985, 18, 261.

Salts grown by electrocrystallisation to give $[TMTSF]_2X$ X = e.g., BrO₄, ClO₄, PF₆, BF₄, NO₃, ReO₄

- Metals at room temperature
- Superconductors under pressure at low Ts
- Greater dimensionality through Se-Se contacts

Soluble polymer using DMF/Toluene

Good solubility in common solvents (chloroform, dichloromethane, THF)

GPC gives an average MW of *ca.* 4,500 – 9 repeat units (Polydispersity 1.32) Exceptional doping levels

Alternative functionality provides MWs of around 250,000 and the polymer has excellent solubility.

Organic charge storage materials

Advantages over conventional materials:

- Cost reduction
- Weight reduction
- Heavy metals elimination
- Flexibility
- Solution processability into thin films
- Potential compatibility with other (organic semiconductor) devices

See also: J. Mater. Chem., 2004, 13, 2490

Absorption Spectroscopy / CV

Optical band gap =
$$1.77 \text{ eV}$$
 (solid film)

Electrochemical band gap = 1.82 eV

EPR spectroelectrochemistry: g = 2.0078 at 900 mV

Spectroelectrochemistry

J. Mater. Chem., 2007, 17, 255

Spectroelectrochemistry

PCBM blends give good photovoltaic diodes, <u>photocurrent until 850 nm</u>, open circuit voltage reasonably high (comparable with P3HT). Power conversion efficiency 0.13%.

J. Phys. Chem. B, 2006, **110**, 3140. Patent US20060289058A1 (2006).

-10--20 --0.5

TTF

1.0

TTN

0.0

0.5 Potential / V

1,4-dithiin

(a)

	E _{1ox} /V	E _{20x} /V	E _{1red} /V	HOMO/e	LUMO/eV	E _g /eV	λ _{max} /nm
				V			
Poly 1	+0.42	+0.77	-1.97	-5.05	-3.01	2.04	436
Poly 2	+0.56	+0.80	-1.82	-5.21	-3.14	2.07	471
Poly 3	+0.60	+0.83	-1.93	-5.30	-3.19	2.11	450

Types of Polymer	Charge Density (Ah/kg)	Specific Energy (Wh/kg)	Open Circuit Voltage (V)	Specific Power (W/kg)
Polyacetylene	100-300	100-300	3.5-3.9	up to 30,000
Polyaniline	50-150	100-350	1-4	
Polypyrrole	50-120	50-350	3-4	
Polythiophene	25-100	50-325	3.2-4.2	up to 90,000
Poly- <i>p</i> -phenylene	20-140	300	3.2-4.5	up to 320

Battery characteristics for a range of generic electroactive polymers.

J. A. Irvine, D. J. Irvin, J. D. Stenger-Smith, in *Handbook of Conducting Polymers*, 3rd Edition ed., Taylor and Francis Group, Boca Raton, **2007**. P. Novak, K. Muller, K. S. V. Santhanam, O. Haas, *Chemical Reviews* **1997**, *97*, 207.

345 C g⁻¹

394 C g⁻¹

389 C g⁻¹

Benzobis(thiazole) cores

Monomer electrochemical polymerisation by repetitive cycling over the first oxidation wave. The data is referenced to the Fc/Fc+ redox couple.

Electrochemistry

Cyclic voltammograms of polymers as films on ITO glass. Experiments were conducted in monomer-free acetonitrile solution, under the same conditions as A. The data is referenced to the Fc/Fc+ redox couple.

Plot of current versus scan rate for polymers

Polymers	E _{1ox} /V	E _{1red} /V	HOMO/eV ^a	LUMO/eV ^a	Eg/eV
Poly S BTZ	+0.61	-2.06	-5.2	-2.9	2.3
Poly Se BTZ	+0.74	-1.94	-5.4	-3.1	2.3
Poly BT BTZ	+0.60	-2.11	-4.9	-2.9	2.0

HOMO and LUMO values are calculated from the onset of the corresponding redox wave and referenced to ferrocene, which has a HOMO of -4.8 eV. Electrochemical band gap from the HOMO-LUMO separation.

Electrochemistry

John Forgie Hao Pang Rory Berridge Alexander Kanibolotsky Lyudmila Kanibolotskaya Sergey Gordeyev Jan Lohr Donna Roberts Cristina Pozo-Gonzalo Tahir Khan Shaun Wright

Eric McInnes

Pierre Frère

Zuska Vobecka Ivan Stibor Serdar Sariciftci Christoph Winder Helmut Neugebauer Antonio Cravino

Simon Coles Mike Hursthouse Ross Harrington Bill Clegg

RSC Advancing the Chemical Sciences

MC9 at

3 – 7 August 2009, Glasgow, Scotland

