Properties and Use of Two Iron Hydroxide Impregnated Anion Exchange Resins for Arsenic Removal

Paul Sylvester and Teresia Möller

SolmeteX – A Division of Layne Christensen
Northborough, Massachusetts, USA
www.solmetex.com
Outline

1. Arsenic in drinking water
2. Materials synthesis and characterization
3. Laboratory batch studies
4. Field trials
5. Conclusions
US Drinking Water Regulations

- Maximum Contaminant Level (MCL) for Arsenic in drinking water lowered from 50 µg/L to 10 µg/L by the US Environmental Protection Agency (EPA) in January 2006.

- Estimated that 4,000 water providers and several million domestic wells in the US out of compliance.

- New Jersey imposed a more stringent 5 µg/L MCL.
 - Other states also contemplating lower MCL.

- Water systems above the new MCL must implement an arsenic remediation strategy.
 - Local legislation starting to appear that also affects domestic wells.
Long Term Exposure to Elevated Arsenic in Drinking Water

- Long term (chronic) exposure to ppb levels of arsenic causes range of ailments.
 - Lung, kidney, liver and bladder cancer association with arsenic in drinking water is well established.

- Higher levels (> 0.1 ppm) can cause skin lesions and discoloration.
 - Estimated in Bangladesh that 35 million people exposed arsenic levels greater than 10 ppb.
Arsenic - Induced Skin Lesions in Bangladesh
Arsenic in US Groundwater

Map showing arsenic concentrations in US groundwater. The map uses color codes to indicate concentrations: red for 50 µg/L or more, orange for 10–50 µg/L, yellow for 5–10 µg/L, green for 3–5 µg/L, and black for insufficient data. The map highlights areas with higher arsenic concentrations across various states.
Why Arsenic is of Interest to SolmeteX

Arsenic Concentrations in Bedrock Aquifers (μg/L)
- < 5
- 5 to < 10
- 10 to < 20
- ≥ 20

KILOMETERS
ArsenXnp media

- Standard ion exchange resin size distribution (300 – 1200 µm).
- Iron throughout resin bead.
- Opaque mustard/brown colored.
- Support is a macro-porous strong base anion exchange resin.
ArsenX\(^{np}\) - Synthesis and Characterization

- Multistep process to disperse iron hydroxide throughout an anion exchange resin bead.

- Synthesis optimized and scaled up by SolmeteX.

- Commercial product, ArsenX\(^{np}\), manufactured under license by The Purolite Company in Philadelphia, USA

- NSF-61 certified for drinking water applications.
1. Contact anion exchange resin with an anionic oxidant, e.g. hypochlorite, persulfate, permanganate.

\[\text{R}^- \text{Cl}^- + \text{Ox}^{-\text{(aq)}} \rightarrow \text{R}^- \text{Ox}^- + \text{Cl}^{-\text{(aq)}} \]

\(R = \text{Resin bead} \quad \text{Ox} = \text{Oxidant anion} \)

2. Contact oxidant-loaded resin with an Fe(II) solution to precipitate ferric hydroxide.

\[\text{Fe(II)}^{-\text{(aq)}} + \text{R-Ox} \rightarrow \text{Fe(OH)}_3 \downarrow \]

3. Wash final product to remove unbound iron hydroxide and raise pH to ~7.
ArsenX_{np} TEM Micrograph

- Surface of resin bead
- Pore
- Polymer
- Hydrous iron oxide coating
High Magnification ArsenXnp TEM Image
npRio media

- Standard ion exchange resin size distribution (300 – 1200 µm).
- Iron throughout resin bead.
- Dark red/black translucent beads.
- Support is a microporous gel-type strong base anion exchange resin.
npRio - Synthesis

- Ion exchange FeCl_4^- anion onto anion exchange resin.

 $$R^- \text{ Cl} + \text{FeCl}_4^-_{(aq)} \rightarrow R^- \text{ FeCl}_4 + \text{Cl}^-_{(aq)}$$

 $R = \text{Resin bead}$

- Contact loaded resin with an alkaline solution to deposit ferric hydroxide *in situ* within the bead.

- Neutralize resin and wash to remove any unbound ferric hydroxide.

- npRio commercially manufactured under license by Basin Water in Memphis, TN.

- NSF-61 certified for drinking water applications.
npRio TEM micrograph
ArsenX^{np} and npRio Comparison

<table>
<thead>
<tr>
<th>Property</th>
<th>ArsenX<sup>np</sup></th>
<th>npRio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Content (Dry weight)</td>
<td>~250 mg/g</td>
<td>~300 mg/g</td>
</tr>
<tr>
<td>Base Bead</td>
<td>Macroporous AlX</td>
<td>Gel Type AlX</td>
</tr>
<tr>
<td>Bead Size</td>
<td>300 – 1200 µm</td>
<td>300 – 1200 µm</td>
</tr>
<tr>
<td>Physical appearance of oxide particles</td>
<td>Nanoparticle coating around macropores</td>
<td>Discrete lath-shaped nanoparticles</td>
</tr>
<tr>
<td>Form of Hydrous Iron Oxide</td>
<td>Low crystallinity goethite</td>
<td>X-Ray amorphous</td>
</tr>
<tr>
<td>Point of Zero Charge (pH<sub>pzc</sub>)</td>
<td>8.8 – 9.0</td>
<td>6.5 – 7.5</td>
</tr>
</tbody>
</table>
As(V) Isotherm Capacity - Experimental Procedure

- 0.025, 0.050 and 0.100g of media equilibrated overnight with 200 ml solution containing 1 ppm arsenic(V) in matrix of 120 ppm sulfate, 33 ppm chloride 100 ppm bicarbonate.
- Silica content varied from 0 – 70 ppm SiO$_2$.
- pH adjusted using HCl or NaOH within range pH 7.0-9.0.
- Residual arsenic content of solution determined and isotherms plotted.
Selected As(V) Isotherm Results

ArsenX

- pH 8.3 - 0 ppm silica
- pH 7.2 - 70 ppm silica
- pH 8.4 - 70 ppm silica

npRio

- pH 8.3 - 0 ppm silica
- pH 7.0 - 70 ppm silica
- pH 8.4 - 70 ppm silica
As(V) Static Capacity Summary

- As(V) capacity of both media decrease with increasing pH.
- Increased silica decreases arsenic capacity for both media.
- npRio has higher initial arsenic capacity in low pH/low silica solutions but is affected more than ArsenX^{np} by increases in pH and silica.
- At pH 8.4, 70 ppm SiO$_2$, arsenic capacities of ArsenX^{np} and npRio are similar but very low (~ 3 mg/g).
- Batch data suggested that npRio would have higher arsenic capacity than ArsenX^{np} under majority of conditions.
Field Trials

- Two locations selected for trials: Paxton, MA and Bow, NH.
- ~ 3L of each media run simultaneously with an empty bed contact time of 3 minutes.
- Paxton – 2” ID columns, 57” height.
 Bow – 4” ID columns, 16.5” height.
- Run in down-flow configuration. Samples taken at intermediate points in column to obtain information on arsenic adsorption kinetics.
- Arsenic breakthrough curves plotted as a function of processed bed volumes.
Field Test Pilot Systems

Paxton, MA

Bow, NH
Location of Test Sites

Map showing the locations of test sites in New Hampshire, Vermont, and Massachusetts. The map highlights areas with arsenic concentrations in bedrock aquifers. The locations of Paxton and Bow are marked on the map.
Water Quality at Field Test Sites

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Paxton, MA</th>
<th>Bow, NH</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.7</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>21</td>
<td>44</td>
<td>ppb</td>
</tr>
<tr>
<td>Iron</td>
<td>0.03</td>
<td>0.06</td>
<td>ppm</td>
</tr>
<tr>
<td>Hardness</td>
<td>89</td>
<td>83</td>
<td>ppm CaCO$_3$</td>
</tr>
<tr>
<td>Silica</td>
<td>13</td>
<td>20</td>
<td>ppm</td>
</tr>
<tr>
<td>Chloride</td>
<td>55.3</td>
<td>41</td>
<td>ppm</td>
</tr>
<tr>
<td>Sulfate</td>
<td>20.7</td>
<td>15.5</td>
<td>ppm</td>
</tr>
<tr>
<td>Fluoride</td>
<td>0.2</td>
<td>0.8</td>
<td>ppm</td>
</tr>
<tr>
<td>Phosphate</td>
<td><150</td>
<td><100</td>
<td>ppb</td>
</tr>
</tbody>
</table>
Arsenic Breakthrough Curves

Paxton, MA

Bow, NH

Channeling through media bed

Estimated Breakthrough
Field Trials - Results

- npRio broke through much earlier than ArsenXₙᵣ at both sites:
 Paxton: 104,000 BVs (estimated) for ArsenXₙᵣ vs 43,000 BVs for npRio.
 Bow: 30,000 BVs for ArsenXₙᵣ vs 18,000 BVs for npRio.
- Laboratory batch tests under similar pH and silica conditions suggested npRio would outperform ArsenXₙᵣ.
- Why the difference between lab batch tests and field column trials?
Analysis of Spent Columns

- Twice as much silica on spent npRio at Paxton compared to ArsenX_{np}.
- Suggests higher affinity of npRio for silica, even at low pH
 - Interference with As adsorption.
- Higher NOM levels on ArsenX_{np} than npRio.
 - Expected for a macroporous resin.
- Laboratory tests using humic acid showed little impact on performance of either media.
Conclusions

- Two commercial hybrid iron oxide media evaluated for arsenic removal.
- Form of iron oxide very important for optimum arsenic affinity and tolerance for interfering species, such as silica.
- Static batch tests not always useful for comparing different media.
- Hypothesized that silica adsorption and polymerization on npRio physically blocked access to arsenic adsorption sites as well as directly competed with arsenate anion.
- Microporous gel-type resin more susceptible to blocking of active adsorption sites than a macroporous resin.
Acknowledgements

- Gregg Goodlet & Dogan Ozkaya, Johnson Matthey Technology Centre, UK
- Professor Paul Westerhoff, Arizona State University, Phoenix
- Wade Crawshaw and Dick Shaw from C&C Water Services, Bow, NH
- Tina Moura, Ed Morassi, Dick Goulston and Cindy Letendre, SolmeteX, MA
Listener

Questions

Answered!