

Effect of Unsaturated Acyl Chains on Structural Transformations in Triacylglycerols

Oleksandr Mykhaylyk

Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK

Chris Martin

STFC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD, UK

Crystallisation and Physical Properties of Fat: From Molecules to Market, 18-19 June 2008, Ghent University, Belgium

Motivation

Apart from double and triple chain type of packing common in stable crystal structures of triacylglycerols there is an evidence for another organization of molecules occurring at the very beginning of crystallization from the melt before the formation of the stable crystal structures.

Outline

Stable triacylglycerol phases

- Observations of transient phases of triacylglycerols
- Structure of the transient phases
- Transformation of the transient phases

Packing of alkane chains within a layer of triacylglycerols

Crystal structure and X-ray powder diffraction pattern of β -tristearin (SSS)

Projection of the electron density along the layer normal reconstructed from X-ray scattering patterns

3-chain packing of triacylglycerols (3L)

Time resolved SAXS of isothermal crystallization of StOSt

Cocoa butter phase transitions

SAXS of a cocoa butter cooled to 20C with a shear rate of 3 s⁻¹

Isothermal crystallization of triacylglycerols (time resolved SAXS)

This phase are restricted to pure TAGs containing both saturated and unsaturated acyl chains or mixtures thereof including natural fats

Isothermal crystallization of triacylglycerols with C18 acyl chains (time resolved SAXS)

Isothermal crystallization of StLnSt

Isothermal crystallization of PPO

after Mykhaylyk et al, J. Appl. Cryst., 2007, p. s297.

The evolution of the structural characteristics of the α_2 -phase

TAG	Initial stage		Final stage		Conditions of quenching	
	<i>L</i> , Å	<i>d</i> , Å	<i>L</i> , Å	<i>d</i> , Å		
StOSt	54.3	4.09	51.5	4.20, 3.80	55 °C → 20 °C	
POP	52.0	n/a	n/a	n/a	50 °C → -20 °C	
StLnSt	54.4	4.11	52.5	4.13, 3.69	40 °C → -10 °C	
PLnP	51.9	4.10	49.9	4.17, 3.76	60 °C → -5 °C	
OOSt	57.4	4.11	57.4	4.11	35 °C → -10 °C	
PPO	48.0	4.09	42.8	4.14, 3.72	55 °C → -20 °C	

after Mykhaylyk et al, J. Appl. Cryst., 2007, p. s297.

Four groups of projections of the electron density profile on the layer normal

Two important observations!

- The α₂-phase forms during quenching from the melt; therefore, the structural organization of this phase should resemble supramolecular ordering of triacylglycerols in the melt
- This phase is observed only in mixed saturated/unsaturated triacylglycerols

What do we know about liquid alkanes?

Alkane in gas, liquid and solid state

intermolecular forces act between the alkane molecules

Folding of polymer chains

Schematic drawing of a chain-folded polymer crystal (after Ungar G. & Zeng X.,

Chemical Reviews, V. 101, 2001)

Chain conform. Paraffin	E	F2	гз N	F4 M	F5 M
C102 C150	+ +	+			
C198	+ +	+	+	+	
C294	+	+	+	+	
C390	+	+	+	+	+

Integer folded forms observed in long *n*-alkanes, for a given alkane more folds per molecule can be obtained with increasing supercooling.

Structure of the chain fold in crystalline monoclinic cycloalkane *c*-(CH2)34 (after Kay H. F. & Newman B. A., Acta Cryst., B24, 1968)

Models for supramolecular ordering in liquid triacylglycerides

Discotic model by Corkery et al, 2007

Smectic model by Larson, 1972

Nematic model by Cebula et al, 1992

What do we know about unsaturated C-C bonds in alkyl chains?

Fatty acids

Linoleic acid (ω -6) C₁₈H₃₂O₂

Linoleic acid (ω -6) is one of the two **essential fatty acids** (the other is **alpha-linolenic acid**, ω -3) that humans require. They are "essential" because they can not be produced by the human body.

Phospholipids

Phosphatidyl choline (lecithin)

Considering the group a)

-The position of the glycerol residues does not match the distance measured from the electron density profile; -The structure has the mass density far below the mass density of the liquid state

The mass density of the structure is very large (~1.4 g/cm³);
Acyl chains are not straight;
Hexagonal packing of the acyl chains

within the layer is unlikely

Possible dimeric units in liquid triacylglycerols

Four chains interaction

Two chains interaction

Considering the group d)

Representative models of packing of StOSt molecules in dimers (projections onto the slide plane), which is likely to be formed in the liquid state before the formation of the α_2 -phase

A model of packing of the StOSt molecules in the layers of the α_2 -phase

Scattering patterns of liquid crystals

FIG. 1. Schematic representation of the polar nematic and smectic-A phases. The molecules are drawn as thin rods with an arrow on one end to denote the lack of inversion symmetry produced by an off-center dipole.

FIG. 2. Diffraction patterns of the polar nematic and smectic-A phases. The vertical axis indicates the q_z direction and the horizontal axis indicates the q_xq_y plane. The small solid squares denote Bragg-like spots and the large ellipses denote diffuse spots. The monolayer ordering (d = l) produces the scattering at q_2 and the dipolar ordering $(l < d \le 2l)$ produces the scattering at q_1 .

K. K. Chan et al, Phys. Rev A, V. 34, 1986, p. 1420

Isothermal crystallization of StLnSt

2L+3L transient structure

The experimental SAXS pattern of StOSt isothermal crystallization at 10 °C from the melt (55 °C)

after Mykhaylyk et al, J. Appl. Cryst., 2007, p. s297

Can we make use of this finding about structural transformations in triacylglycerols?

 α_2 -phase is a distinctive property of mixed saturated/unsaturated triacylglycerols. It may be possible to find conditions when this property can be effectively used in fat fractionation.

Transient structures of α_2 -phase can be used to control polymorphic transformations of triacylglcerols.

Polymorphic transformations of StOSt

Liquid $\rightarrow \alpha_2 \rightarrow \alpha_1 + \gamma \rightarrow \gamma$

Liquid $\rightarrow \alpha_2 \rightarrow$ sub- $\alpha_2 \rightarrow \beta' + \gamma$

 γ phase fraction in StOSt crystallized at 30 °C after isothermal crystallization at different temperatures for a certain duration.

after Mykhaylyk & Hamley, J. Phys. Chem., 2004, p. 8069

Conclusions

- Transient phases are identified in mixed saturated/unsaturated triacylglycerols or their mixtures. The transient phase formation is caused by a mismatch between saturated and unsaturated acyl chains followed by their separation in the melt
- These phases resembles smectic A₂ liquid crystal phases
- Reduction of the longitudinal diffusion of the molecules at low temperatures freezes the molecular motion and makes unsaturated bonds to be terminal points causing formation of interdigitated phases similar to smectic A_d liquid crystal phases
- At certain conditions dictated by molecular structure the transient phases can develop into other structures such as 2L+3L during StOSt isothermal crystallization
- The structural state of the transient phases effect further polymorphic transformations of triacylglycerols at high temperatures

Acknowledgements

