

Developing supply chains from wheat as a feedstock

Dr Adrian Higson/Dr John Williams

Wheat for Biofuels, Bioenergy and High Value Bioproducts 29 April 2008

Bio-based isn't new!

Volumes of renewable materials

- Vegetable Oils 19.8 million tonnes
- Starch 22.5 million tonnes
- Fibres 28.4 million tonnes
- Wood pulp 42.5 million tonnes

Applications

- Biolubricants
- Surfactants
- Starch Polymers
- Cellulose Polymers
- Natural Fibres & Biocomposites
- Fillers and adhesives

A Changing Landscape

<text><text><text><image><image>

UK Wheat Yields

Why Wheat?

Europe's dominant crop

- UK production
 - ~1.8 million hectares
 - Yield ~8 tonnes/hectare (winter wheat)
 - 2007 harvest ~13 million tonnes
- European Potential
 - Large potential for increased yields in Eastern Europe
- Attractive cultivation costs per tonne of starch
- Source of starch, protein and lignocellulose

Beyond starch

- Processed starch is fit for purpose in many applications - but is function limited
- Requirement to convert natural polymers to flexible monomeric building blocks
- Access polyesters, polyurethanes, copolymers etc
- Potential building blocks are well known
 - Ethanol
 - Lactic acid
 - Fumaric Acid
 - Succinic Acid
 - 3-Hydroxypropionic acid
 - etc

Supply Chain Considerations

- Impact on current supply chains
- New crop, new supply chain, land impact Cultivation
- Processing
- Market **Dynamics**

End of life

- Technology Status
- Competition from existing production
- Market location
- Green premium?
- Waste infrastructure
- Waste policies

Potential Supply Chains

Analogous Model of a Biobased Product Flow-chart for Biomass Feedstocks

compostable

Bio-Based Polymers

European Market growth

- Biodegradables are expected to grow from 25kt in 1998 to 2-4 million tonnes in 2020
- By 2020 durables could account for 50% of renewable polymers

Most growth scenarios are based on crude oil prices <\$50 bbl

Difficult to assess the impact of >\$100 bbl oil and volatile agricultural markets

Commercial Activity

- Polylactic acid PLA
- Developed by Dow Chemical and Cargill
- NatureWorks facility in Nebraska capacity 140 kt
- Good process and polymer properties vs conventional plastics
- One of only a small number of synthetic polymers that are fully biodegradable and compostable
- Claim From cradle to resin, 68 percent less fossil fuel resources than traditional plastics (PET)

Courtesy of DuPont

Commercial Activity

- Susterra[™] 1,3-Propanediol
 - Produced in a collaboration between DuPont and Tate & Lyle
 - Processing site in Tennessee capacity 40,000 tonnes per year of PDO
 - Applications
 - Sorona® Clothing, Carpets, Plastics
 - Zemea[™] PDO for personal care
 - Energy & GHG emissions
 - Energy 63.9MJ/kg cf 111.0
 - GHG's 2.18kgCO₂eq cf 5.0

Near Term Commercial Activity

- No technical hurdles for the production ethylene from biomass
- Braskem (Brazil)
 - Planned HDPE production Q4 2009
 - Capacity 200,000 tonnes/year
- Dow/Crystalsev (Brazil)
 - Planned PE production 2011
 - Capacity 350,000 tonnes/year
- Same economic considerations as fossil based production, feedstock cost and availability, construction and operating costs, access to market etc
- Can Europe reduce feedstock costs or leverage a technology advantage?

ChemSystems

Assessing UK options

Market Attractiveness

- Local/European/Global Markets
- Profitability
- Competitive Intensity
- Partnering requirements
- Downstream development opportunities

Technical Feasibility

- Commercial development
- Capital Investment
- Ability to operate at world scale
- Technical Complexity
- Technology Access
- Environmental factors

Assessing UK options

Screening Matrix results indicate ten products in the desired attractiveness regime

Market Attractiveness

ChemSystems

The End Game?

Source: Mapping the Develop of UK biorefinery complexes (Tamutech Consultancy)

The Bigger Picture

Figure from Ragauskas *et al,* (2006) The Path Forward for Biofuels and Biomaterials. Science 311: 484-489