Durability and Carbon Footprint

Tarmac (1) ®

Colin Loveday SCI 19th March 2009

Carbon – I'm doing my bit!

Durability and Carbon Footprint

Exciting Stuff!

Please leave quietly

Others may be asleep!

Durability, Sustainability and Carbon Footprint

• What does durability have to do with carbon footprint?

Calculation of Embodied Carbon

- Constituent production
- Constituent transport
- Heating and drying
- Mixing
- Delivery transport

CO2 CALCULATOR for ASPHALT

Embodied Carbon in Asphalt

Component	CO ₂ e/tonne-asphalt
aggregate	4
binder	18
mixing	4
Heating and drying	21
delivery	3
TOTAL	50

Carbon in life cycle

 Carbon/year across the life cycle is more important than initial embodied carbon

2.5kg CO₂e/tonne-asphalt per annum

1.25kg CO₂e/tonne-asphalt per annum

Embodied Carbon in Asphalt

Component	CO ₂ e/tonne-asphalt
aggregate	4
binder	18
mixing	4
Heating and drying	21
delivery	3
TOTAL	50

However

• Asphalt can be recycled as asphalt!

• All is not lost.....

44% CO₂e recovered on recycling

Component	CO ₂ e/tonne-asphalt
Embodied carbon in aggregate and binder	22
'Energy' carbon from mixing, heating, drying and transport	28
Total	50

1.4kg CO₂e/tonne-asphalt per annum

0.7kg CO₂e/tonne-asphalt per annum

Action to reduce asphalt carbon

 Design and build asphalt pavements to last as long as possible

• Make sure that asphalt materials are fully recyclable

Asphalt - Durability and Sustainability

 Highways Agency/Quarry Products Association/Refined Bitumen Association Collaborative Research

Collaborative Research at TRL

- 2002-5 Sustainability Indicators Evaluation of EME 2
- 2005-8 Durability

• 2008 - Sustainability/carbon footprint

Current Collaborative Research

- Sustainability criteria
- Carbon Footprint declaration protocol (mix specific) mid 2009
- Responsible Sourcing criteria 2010
- Involves HA and CSS
- Working through TRL C4S

Sustainability

- Reduce carbon
 Improve durability
- Reduce primary content
- Reduce energy
- Increase recycling

Durability

• We have made durability and extending life a key ongoing theme in our research programmes

Collaborative Research on Durability

- Best Practice Focus Group (BFG)
- Donna James (HA)
- Chris Southwell (RBA)
- Colin Loveday (QPA)
- David Williams (QPA)
- Cliff Nicholls (TRL)

Typical BFG progress meeting......

Consulted all sides - Workshops

Everyone had successes

Everyone had failures

General Conclusion

- Design too focused on stiffness/thickness
- The great Pascal Race!
- Construction detail overlooked
- Insufficient thought on drainage and drainage maintenance

Broad agreement on the issues

- Water
- Bonding
- Joints
- Drainage
- Water
- Bonding
- Joints
- Drainage

Climate Change? Insidious change

An increase in water inside pavement structures

Water moves within pavements

Dry coring – motorway overlay

Bone dry on top – water flowing at interface

Water flowing at interface

Significant Water Flow

Water flowing along unbonded interfaces

3 Minutes

30 Minutes

60 Minutes

Water enters from side

Water the great enemy

Silted drainage

Unbonded layers

Water erodes asphalt base under traffic

Collaborative Research on Durability

• Revised all SHW 900 series laying requirements

•Published a Best Practice Guide – Road Note 42

Changes to SHW 900 series

- Replaced negative clauses with positive clauses
- Greater emphasis on durability

Enhanced SHW 900 requirements

- Bonding
- Joints
- Sealing

Revised SHW 900 Series

• Completely new clause 903 for laying

Recognises importance of bonding

- Bonding every Interface
- Always required
- Better defined

Joints always fail first

Close attention to joints

- compaction and voids
- •sealing
- •overbanding

Joint sealing summary

Even better - avoid joints where possible

- Echelon paving
- •Thick base layers

Road Note 42

• The answer to life, the universe and Everything.....

Road Note RN42 Creating the future of transport

Best practice guide for durability of asphalt pavements

J C Nicholls, M J McHale and R D Griffiths

Enhanced Laying Standards

- Modest cost increase
- Huge durability gain
- Not rocket science
- Will significantly reduce carbon footprint

What are others doing?- Kompaktasphalt

One paver – two screeds

• Paves two layers in one pass

•No interlayer joint

Complex feed arrangements

 Needs total possession

Seamless durable construction

• Where could we use this on our network?

New Material – EME2

- 2001 Tarmac studies
- 2002-5 TRL
- 2005 TRL 636
- 2005 Scottish trials
- 2007 HA trials
- 2008 SHW 930

Qu'est que c'est l'EME?

- Enrobe a Module Eleve
- (French High Modulus Base)
- Small aggregates
- Hard Grade Binder
- High Binder Content

Tarmac (1)

Special Hard Grade Bitumens

- 10/20 Grade
- 15/25 Grade
- Not blown
- Can use polymer

Industrial Scale Laboratory Mix Design

80kg batch mixers

Programmable compactors

Careful mechanical/volumetric design

- Aggregate packing
- Compactability
- Voids
- Richness Modulus

Extreme Deformation Resistance

Large Wheel Tracker

Tested at 60 deg C

Pourquoi l'EME?

- Durability
- Deformation resistance
- Flexibility
- Structural stiffness

Pourquoi l'EME2

- Because they tried I'EME1 with a lower binder content
- And it was not durable

Why is EME2 better than HMB?

- More deformation resistant
- 30% more bitumen
- More durable
- Stiffer
- Better in fatigue

Tarmac

- More compactable
 - Less prone to segregation

M876 Trial – Stirling 2005

- Total carriageway length
 3.4km
- EME trial length 1km
- DBM50 'control' lengths 1.7km and 0.7km.

M876 Laying 0/20mm EME Class 2

Lessons from laying

- Thick layers are practical
- Compaction easier than HMB
- Thick layer compacted right through
- PTRs not required

EME and Pavement Durability

- Binder rich
- Impervious
- Compactability

Tarmac 🕖

- Sticky and bonds well
- Eliminates segregation
- Consistent mechanical properties

2007 onwards mainstream use

A90/M9 widening and Forth Bridge Spur

Tarmac T

M69 May 2008

- EME2 Base and Binder Course
- Full contraflow
- Three pavers in echelon
- Joint free

Tarmac 🕼

Works, materials and construction designed for Durability

Result – seamless, impermeable, bonded, durable

Conclusions

- Water is the great enemy
- Assume it will be there
- Lay as thick as possible
- Lay as wide as possible
- Bond and seal and seal and bond
- Embrace EME2
- Don't compromise recyclability
- Maintain your drainage
- Embrace the new SHW 900
- Embrace RN42
- Plan works properly
- Sleep soundly!

Watchpoints for carbon reduction

- Design and build for long life
- Cheap is not carbon cheerful
- Build in recyclability
- Attend to detail in construction

2.5kg CO₂e/tonne-asphalt per annum

0.7kg CO₂e/tonne-asphalt per annum

Afterthought from the Dubliners

- Well we laid it in the hollows and we laid it on the flat,
- And if it doesn't last forever well I'm sure I'll eat my hat,
- I've travelled all around the world and sure I've never felt,
- Any surface with a better carbon footprint than the hot asphalt!

Colin.loveday@tarmac.co.uk

Tarmac T