Reducing the carbon footprint from road use

S. Cook

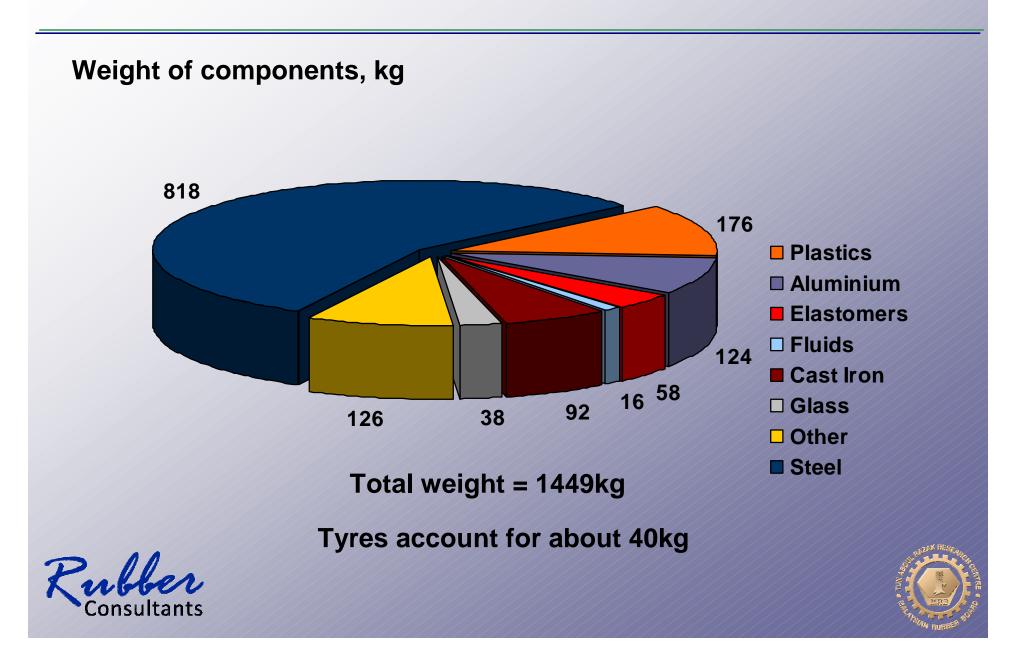
Tun Abdul Razak Research Centre

Hertford, United Kingdom

Asphalt's Carbon Footprint, SCI, London 19th March 2009

scook@tarrc.co.uk

Principal factors that influence carbon footprint from road use


Principal factors that influence carbon footprint from vehicle use

- No of vehicles globally set to treble by 2050
- Type of vehicle weight, aerodynamic drag
- Type of engine IC, hybrid, electric
- Type of fuel hydrocarbon, biofuel, fuelcell
- Fuel Price oil price, tax
- Vehicle materials/manufacturing methods/use of recyclate
- Fuel Economy '50by50 Challenge' launched at Geneva Motor Show
- Legislation Emission standards

Composition of a vehicle: Ford Mondeo

Environmental impact of tyres

- Use of renewable (or sustainable) materials
- Energy consumption over life cycle of rubber product è Depletion of fossil fuels
 CO₂ emission è climate change
 - Production of raw materials
 - Transportation of materials and products
 - > Use
 - Lifetime
 - Disposal or recycling

Recently:

Epoxidised Natural Rubber (ENR)

Vegetable oils (or derivatives)

Natural fibres

Starch

Goodyear GT3, BioTred (2001) Part-replacement of silica and black, improved performance

Recently:

Epoxidised Natural Rubber (ENR)

Vegetable oils (or derivatives)

Natural fibres

Starch

 Kumho (2007)
 Lyocell a fibre from wood pulp cellulose

Recently:

Epoxidised Natural Rubber (ENR)

Vegetable oils (or derivatives)

Natural fibres

Starch

Nokian Hakkapeliitta 4 (2003) Used rape-seed oil, improved performance

Renewable/sustainable raw materials used in tyres

Recently:

NR + Epoxidised Natural Rubber Vegetable oils (or derivatives) Natural fibres Silica (sustainable ?)

- Sumitomo ENASAVE 97 (2008)
 Non-petroleum materials
 content up from 44% to 97%
 - ENR-silica treads
 - ENR/NR sidewalls
 - ENR inner liner
 - Improved rolling resistance
 - Better wet grip

Sustainable raw materials?

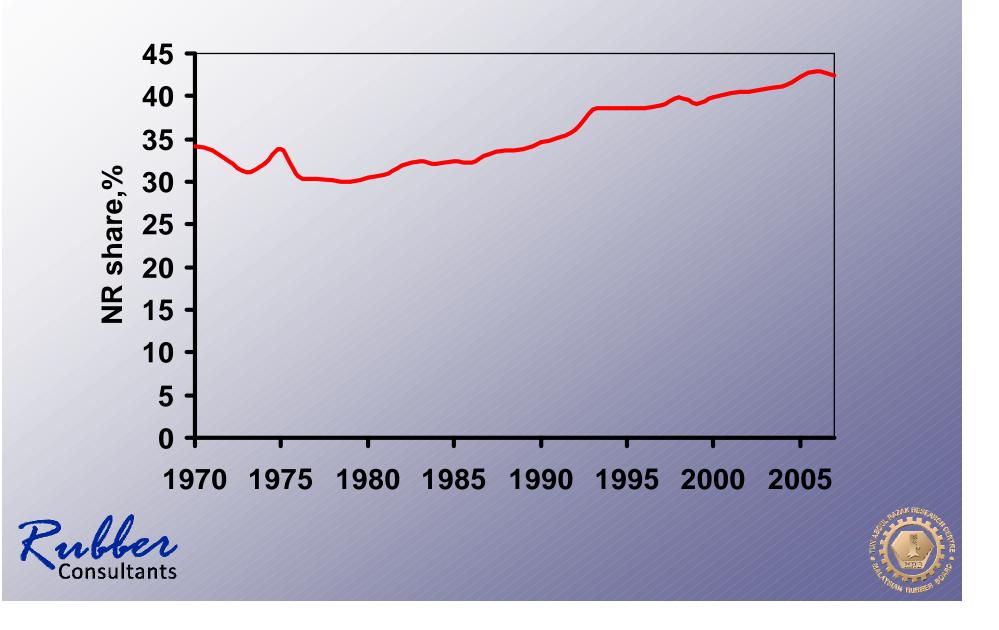
A Definition:

A sustainable system or process must be based on resources that will not be exhausted over a reasonable period (sometimes expressed as the 'long term').

Thus, silica may be regarded as a sustainable resource.

This is important for ENR in the context of sustainability.

Natural rubber - sustainability


11

Natural rubber - sustainability

The natural rubber tree, Hevea Brasiliensis, efficiently sequesters carbon*:

Photosynthetic rate of mature <i>Hevea</i> leaf	11 µmol/m²/s
Other tree species	5-13 µmol/m²/s

Over a 30 year life, C sequestration per hectare:	272 tonnes #
Rain forest	234 tonnes
Secondary rain forest	150 tonnes

Yields have increased from about 250 kg/Ha to as high as 3500 kg/Ha

Hevea is also a valuable source of timber

* Jones, K.P. (2000) Kautsch. Gummi Kunstst. 53, 735

[#] Chung, C.-M., Wang, R.-S. and Jiang, J.-S. (2007) J. Env. Sci. 19, 348

Energy inputs for NR production (MJ/kg)*

Fertilisers & other chemicals	5
Primary processing	3
Transport	5-8
Total	15-16

Synthetic rubber: ~100 MJ/kg ° 3 kg CO₂/kg

Biodiversity high in rubber plantations compared with other monocultures

* Jones, K.P. (1994) Rubb. Dev. 47, 37

Vehicle Lifecycle energy consumption

- 90% of the total lifecycle energy consumption of a vehicle occurs during its lifetime on the road
 - Average of 79GJ* associated with passenger vehicle manufacture, disposal/recycling vehicle at end of life
 - Estimated 25000 litres of fuel consumed by a passenger vehicle during lifetime
 - Energy consumption of 880GJ during vehicle lifetime
- Fuel economy is the key factor in vehicle lifecycle energy consumption

*Dust to Dust – The Energy cost of new vehicles from concept to Disposal. CNW Marketing Research Inc.

Environmental impact of tyres

- Use of renewable (or sustainable) materials
- Energy consumption over life cycle of rubber product è Depletion of fossil fuels
 CO₂ emission è climate change
 - Production of raw materials
 - Transportation of materials and products
 - > Use
 - Lifetime
 - Disposal or recycling

Tyres:

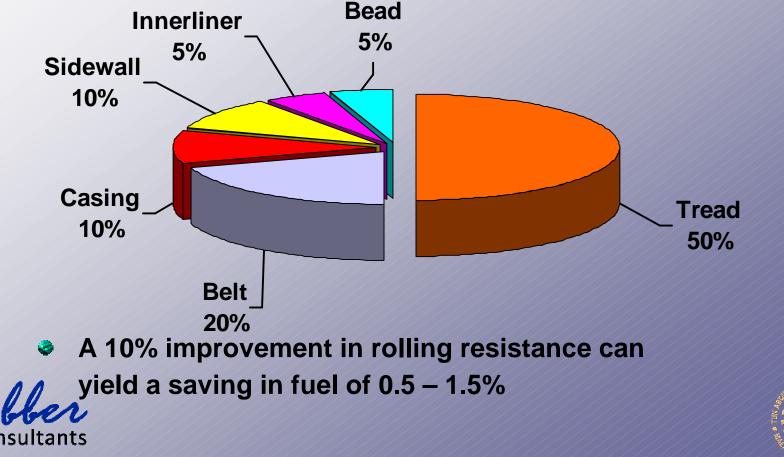
≫

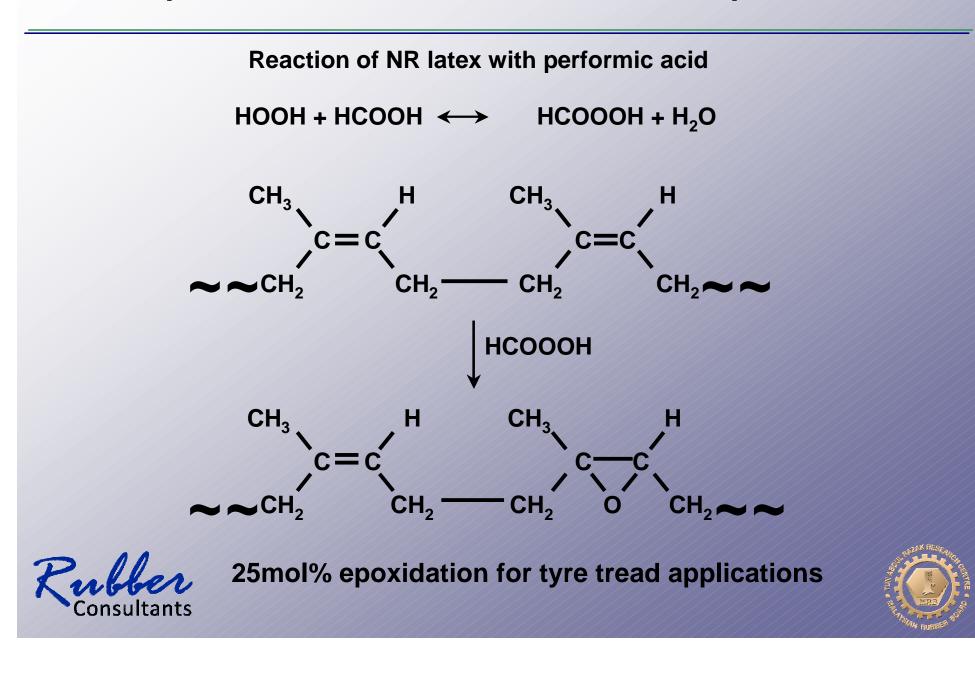
- Most of impact on energy consumption is during use Due to rolling resistance è fuel economy
 - For passenger tyres -

86% of environmental impact during use (Michelin)

Principle factors that influence tyre rolling resistance

- Tyre pressure
- Temperature
- Tyre Tread
 - Tread Pattern, tread depth
 - > Polymer NR, BR, eSBR, sSBR, ENR
 - Filler Silica
 - **Carbon Black**
 - **Carbon silicon dual phase fillers**
 - New 'nanostructure' carbon blacks
 - **Biofillers**
- Road surface concrete, asphalt, 'chip and seal blacktop',
 - increased porousity, better in wet conditions
 - affects fuel economy by up to 10%

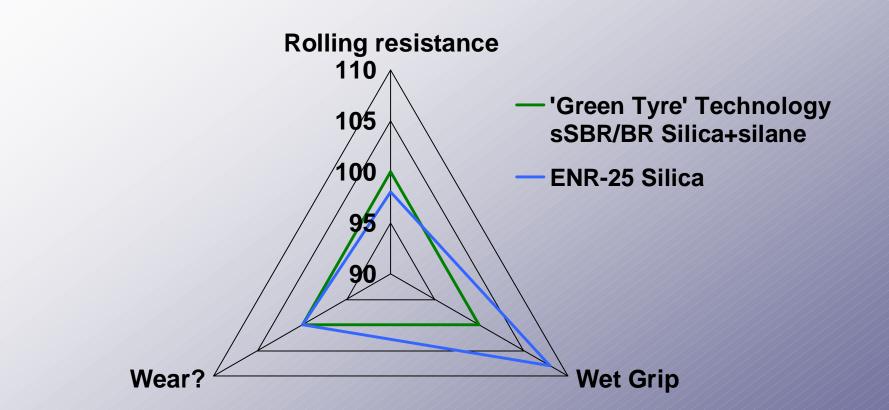

http://www.vejdirektoratet.dk/publikationer/VInot23/index.htm


Influence of tyre components on rolling resistance – passenger tyre

Rolling resistance:

- 8 18% of fuel consumption, up to 60% at constant speed
- 50% lower than 1980s levels mainly through radials

Epoxidised natural rubber – ENR - Ekoprena™


Use of ENR-25 in passenger tyres

- ENR-25 interacts strongly with silica filler no coupling agent required
 - Reduced rolling resistance
 - Interaction moderated by water – improved wet grip
 - Improved microdispersion of silica – improved wear?

Improved performance from ENR-25 in passenger tyres

Silica filled ENR-25 uses 20 – 30% less energy to mix

- Fuel economy far outweighs other factors in vehicle lifecycle energy analysis
- Tyre rolling resistance has a significant effect on vehicle fuel economy
- Road surface can contribute strongly to tyre rolling resistance
 [Also to wet grip and noise all legislative issues for tyres]
- Use of sustainable resources is increasingly important in tyres
- Use of ENR in tyres can help to reduce the Carbon Footprint of tyres and improve wet grip

