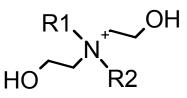


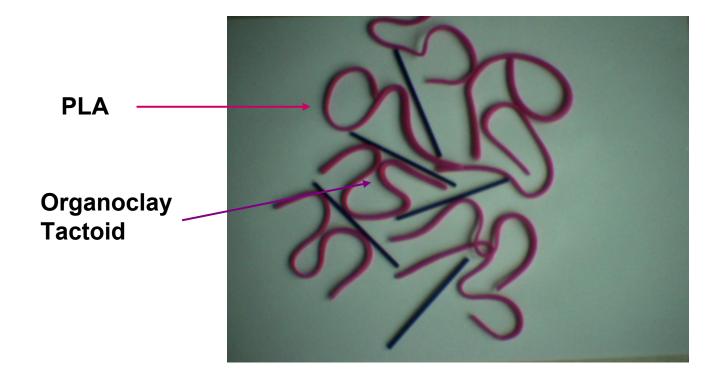
Loughborough


University

Andy McLauchlin and Noreen Thomas Department of Materials, Loughborough University LE11 3TU

Introduction

- Nanoclays can improve key properties of PLA
 - Barrier Properties
 - Modulus
- Cloisite 30B
 - R2 = 65% C18; 30% C16; 5% C14.
 - Based on Animal Fats
 - OH groups confer compatibility with PLA (Krikorian and Pochan, 2003)



materials@lboro

Loughborough University

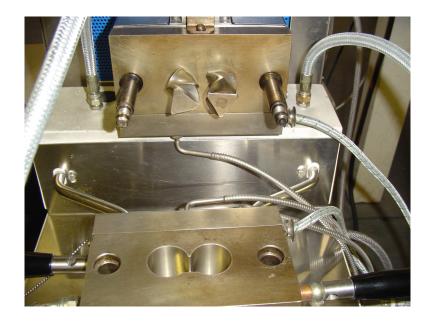
Intercalation/Exfoliation

Diskanaképédikibbenikata keteled

materials@lboro

- Aim
 - To establish the best processing conditions and mixing method
- Objectives
 - To evaluate the effect of temperature, rotor speed and mixing time on the intercalation and exfoliation of C30B
 - To evaluate different mixing methods.
 - To characterise the samples by XRD and TEM

 HM1010 PLA (MWt 90-100KD) provided by Hycail, BV (now Tate & Lyle)


 Cloisite 30B provided by Southern Clay Products, Texas, USA

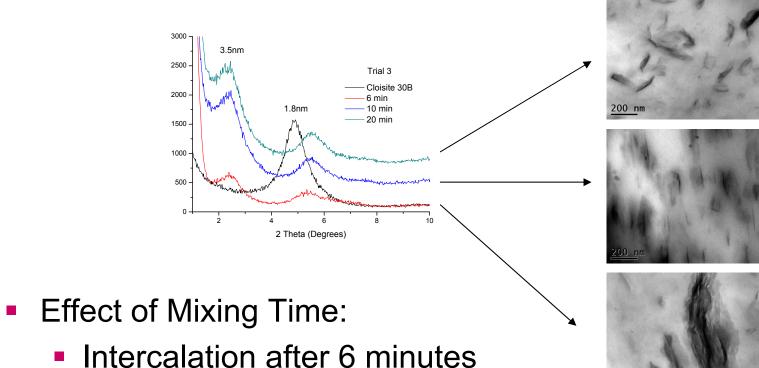
materials@lboro

Melt compounding

- PLA + 3% C30B
 - (both dried 50°C, 16h *in vacuo*)
- Polylab Torque Rheometer
 - Roller rotors
 - Fill factor = 0.7 x chamber volume

materials@lboro

Loughborough University



Processing Conditions

Trial	Temperature °C	Time min	Rotor Speed rpm	Filler Addition Method
1	190	10	60 / 85 / 110	1-step
2	170	10	100 / 120 / 140	1-step
3	170	6 / 10 /20	100	1-step
4	170	10	100	Pre-melt
5	170	10	100	Masterbatch

Effect of Mixing Time

Exfoliation after 10 minutes

3000 -

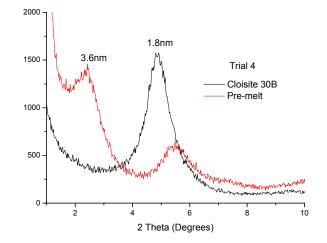
2500

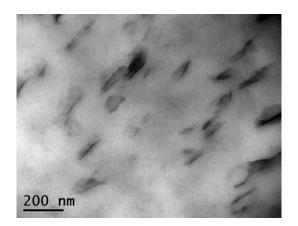
2000

1500 -

1000

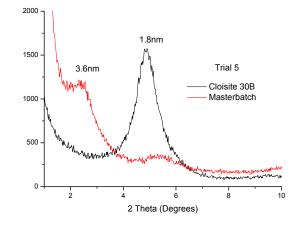
500 -

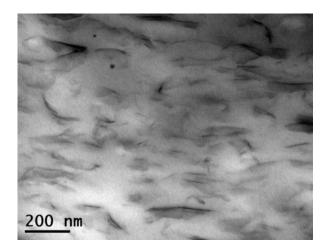

0


- Some improvement after 20 minutes

200 nm

Effect of Premixing




- Good Exfoliation
- Stopped organoclay from adhering to the rotors

materials@lboro

Masterbatch Method

- Large population of exfoliated clay platelets
- Some intercalated clay remained but the intensity of the XRD signal was lower

Loughborough University

Conclusions

- Varying the processing temperature and rotor speed had negligible effect on the degree of intercalation.
- In batch mixing, the method by which the polymer and clay are introduced greatly influences the degree of exfoliation and dispersion.
- The masterbatch method remains the most effective way of achieving a good degree of exfoliation by batch mixing.
- Thank you

Loughborough

University