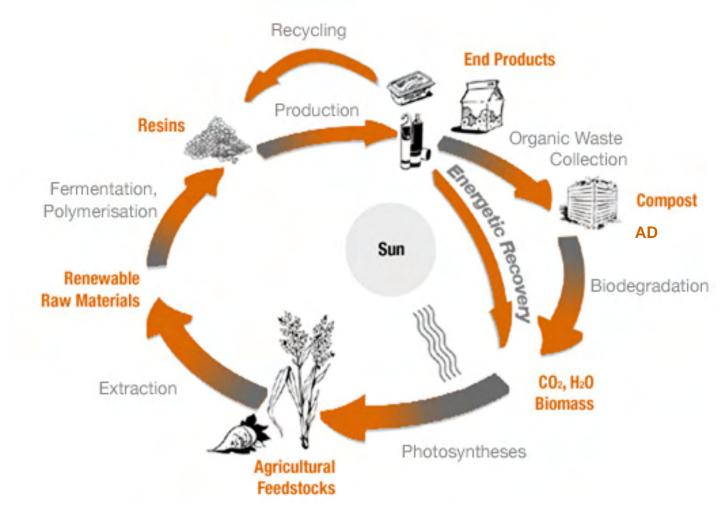


The UK's National Centre for Renewable Fuels, Chemicals & Materials

End of Life Scenarios for Bioplastics

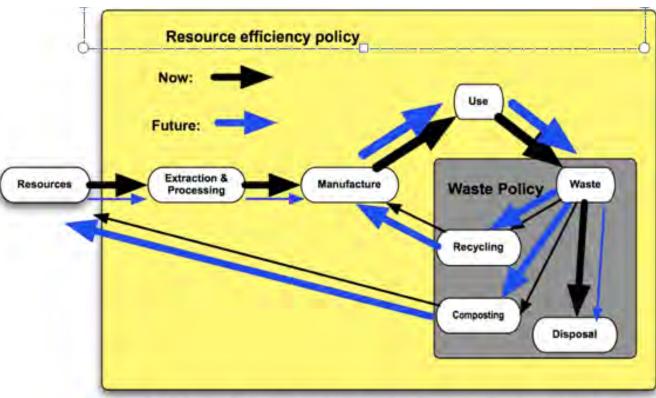
Dr John Williams Head of Polymers & Materials 23rd April 2009



Content

- The key challenges for our world
- A circular economy as part of the solution
- Waste policies for a circular
- economy
- The role of compostable materials
- Conclusions

Idealised Closed Loop


Courtesy European Bioplastics

- An economy where 'waste' does not exist, with 'end of life' resources reentering the economy
- An approach focussed on maximising resource efficiency
- Waste policy is a key component of such an approach
- A simplified diagram:

Waste Policy v Resource Efficiency

NB: There will of course be waste from extraction and processing and manufacturing; this waste is placed at the end of the system in order to simplify the diagram

Waste Policies to Maximise Resource Efficiency

- The top of the waste hierarchy shows the way:
 - Waste prevention the best environmental option, avoiding resource use
 - · Reuse reduces need for resources and manufacturing
 - Recycling reduces need for extraction and processing of new resources
 - Composting returns nutrients and structure to soils; displaces other fertilizers; sequesters carbon; and, in the case of anaerobic digestion (AD), produces methane which can be used as a 100% renewable energy source.
- Then we must phase out the rest the residual waste, which is currently landfilled or incinerated

Mechanical Recycling

 Strengths High purity recyclate Simple process Value of polymer synthesis preserved Outlets for downgraded product Techniques for using recycled plastic in demanding applications 	 Weaknesses Hard to apply to post consumer waste Capital and labour intensive Requires clean, homogenous waste streams
 Opportunities Recycle from manufacturing scrap Recycle from secondary and tertiary packaging in supply chain 	 Biopolymers may be seen as a contaminant to more established materials

Chemical Recycling

Strengths	Weaknesses
 Produces a feedstock that 	 Capital intensive
can be used to create virgin polymer	 Needs a large plant to be cost effective
 Relies on well established 	 Large scale chemical
chemical engineering	engineering needed –
 Will tolerate greater 	complex process.
feedstock variability	 Never proven at full scale
 More tolerant to 	 Only appropriate for some
contaminants	biopolymers
Opportunities	Threats
 Could handle post-consumer 	 Energy and transportation
waste	costs mean that process will
 Could handle multi-material 	never be viable
'engineered' packaging	 Viable plants cannot handle
 Integrate biopolymers with 	enough feedstock variability
general polymer waste	to tackle post consumer
stream	waste

Incineration

Strengths	Weaknesses
 Handles all waste with a high carbon content Recovers energy from original fossil feedstock Carbon from biopolymers returned to the biosphere Efficient use of resources 	 Capital intensive Pollution risk if poorly designed or operated Public suspicion fuelled by campaigns Swings in energy price could threaten viability
Opportunities	Threats
 Biopolymers contribute to 	 Public opinion blocks
renewable energy	incineration

Composting

 Strengths Dramatically reduces landfill Can cope with any biodegradable material Produces a commercial product Low energy input Returns carbon from 	 Weaknesses Requires careful separation of waste streams Cannot handle 'engineered' packaging that includes non-biodegradable polymers Treatment of kitchen waste requires new closed vessel
biopolymers to the biosphere Opportunities Niches applications where composting can be guaranteed Major switch to compostable	composting Threats Inadequate market for the compost Retailers won't label materials that will not compost at home
packaging	 Misclassification problem raises costs

Anaerobic Digestion

- E.g. Greenfinch project in Ludlow, UK
 - Government assisted
 - Strong public support
- Recycles 5000 tpa of sourcesegregated waste into:
 - Pasteurised fertilizer for local agriculture
 - Biogas, producing electricity & heat (100% renewable)

www.greenfinch.co.uk

- Anaerobic digestion of food waste from UK households could generate 0.4% of UK electricity demand [5]
 - More could be generated if commercial food waste, or agricultural waste, was included.


Phasing Out Residual Waste

- Ensuring that (eventually) everything can be reused, recycled or composted
- Mechanisms:
 - Provision of collection systems
 - Development of processing capacity and markets
 - Regulations requiring recycling of complex materials
 - Including design for recycling
 - E.g. Waste Electrical & Electronic equipment Directive
 - A move to more recyclable plastics
 - Expansion of compostable materials

The Real World

- The waste industry is conservative, and change takes time
- You will not get across-the-board transformation of systems in a short period
 - due to e.g. lack of resources, long contracts & lifespan of equipment
- The public has limited capacity and willingness to cope with complex waste systems
 - Complex systems for consumer plastics sorting won't work
 - Compostability must be clear to the public, with a range of signals (labelling, product type, education etc)
- Therefore, realistic plans must accept that much will remain the same - but there will be some changes

Key Opportunities

- Packaging materials that are hard to recycle due to complexity or lack of markets
 - E.g. much food packaging material
 - · Particularly where will be contaminated by food
 - · Key need compostable laminate systems
 - NOT materials that are recycled e.g. replacing PET or HDPE in bottles
- Products that may end up in environment as litter
 - E.g. Carrier bags, Nappies
- Products that will never be recyclable
 - E.g. Nappies
- Bags for compost systems

Criteria

• Feedstock:

- Sustainably produced (I.e. low/no pesticide inputs, low water use etc)
- Non-GM
- Ideally, a waste rather a food

Process:

- Energy efficient
- Resource efficient (zero waste)
- Green chemistry

• End product:

- ideally home compostable, and must meet EU compostability standard
- ideally anaerobically digestible
- free of problematic chemicals, including any which would affect compost quality (including additives)

Sustainable Polymer/Renewable Polymer – A Working Definition

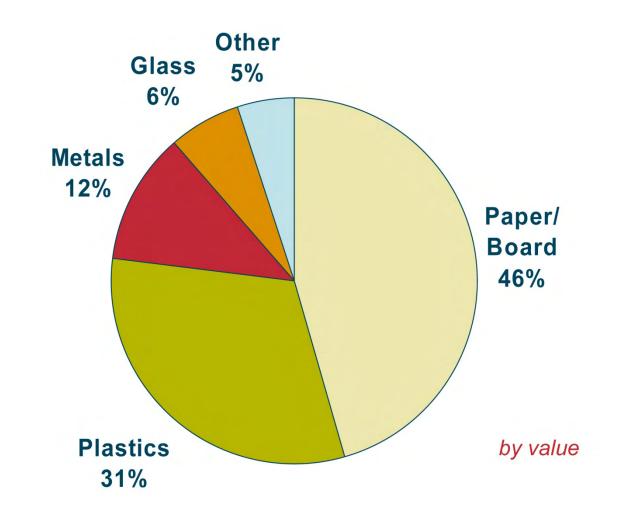
- Any polymer material extracted DIRECTLY or produced INDIRECTLY from the biomass.
- This idea automatically obviously covers Celluloses, Starches, Proteins etc.
- It also covers Polylactic Acid (PLA) and Polyglyconic Acids (PGA's) produced from naturally occurring monomers
- But it also includes:
 - Polyethylene produced from ethene, generated by dehydration of Bio-ethanol and;
 - Polypropylene produced from propene derived from Glycerol.

Some Key Issues?

- Recycling / (Reuse)
 - Can the polymer be recycled?
 - E.g. Thermoset (NO) versus Thermoplastic (Yes)
 - How pure does the recyclate need to be?
 - With respect to polymer type e.g. PE, PP, PET, PLA PHA.
 - With respect to grade E.g. HDPE, UHDPE, LDPE etc.
 - How much effort is needed to ensure any material and/or grade purities necessary for recycling?
 - How much infrastructure is needed to facilitate recycling?
 - How much effort is needed to allow regeneration of the monomer or conversion to another feedstock e.g. Syn Gas?
 - Can we make use of less sorted, or even unsorted, waste?
 - How much does the effort of recycling cost ?

Some Key Issues?

- **Biodegradability:** For polymers this seems to be a catch all statement requiring degradation mechanisms involving enzymatic and/or microbial actions.
 - Note this definition does not specify:
 - Aerobic or anaerobic actions
 - Where the degradation is taking place (e.g. In a contrived or natural environment)
 - What the polymer is degrading to, for example; CO_2 , H_2O , CH_4 , biomass
 - The time scale over which any degradation occurs
- Consider the Questions:
 - Is wood biodegradable?
 - Is PLA biodegradable?
 - Is traditional PE biodegradable?
 - Do polymers need to be Biodegradable


Some Key Issues?

- Compostability: defined standards now exist e.g. EN13432.
- These standards typically define conditions, time scales as well as some outcomes, and required defined tests to be carried out before a claim can be made.
 - But they are specific to end use products not to polymer materials.
 - i.e. You cannot say PLA is compostable, and you can only claim, for example that 12µm thick PLA film is compostable after appropriate testing.
 - This second point often seems to be missed and compostability and biodegradability get confused.

Packaging Materials

Primary packaging

Secondary packaging

Tertiary packaging

Renewable Packaging

- Drop-in substitutes
- Increasing range of properties
- Meeting real user needs
- Price/performance gap
- Production scale
- Unique properties
- Performance data in use
- Transparent data on life-cycle impact
- Strategy for the use of biomass/waste

Issues

- Renewable not biodegradable
- Need for independent advice
- Fragility of public opinion
- Labelling packing as compostable
- 'Biodegradable' plastics from petrochemicals
- Overestimating the impact of biopolymers
- Complex 'engineered' packaging
- Preparing for success
- Weight based recycling targets
- Incineration as a key part of waste management
- European focus on minimisation and recycling – not renewables

Conclusions/Opportunities

- Exploit interest in renewable polymers
- Learn from paper and board
- Develop the niches for renewable plastics
- Building renewable polymers into eco-design thinking
- Sell benefits of renewable feed-stocks
- Communicate benefits of 'partial' renewable polymers
- Composting & Anaerobic digestion
- Ensure waste management technologies do not exclude biopolymers

- Feedstock scale-up issues, yields, processing, biorefineries, fermentation
 - Polymer manufacture/processing scale-up forecasts, adhesives, functional coatings
- Packaging engaging retailers, composting trials, Standards discussion, UKRPG
 - End of Life Options

Thank You

www.nnfcc.co.uk

Building sustainable supply chains