## Techniques for Data Collection calorimetry

## Calorimeters

- Technique described using automated commercially available calorimeters but other setups feasible


## Isothermal titration calorimetry

- Often used to study binding:
- Guest in syringe is titrated into host in calorimeter cell
- Heat effects of guest binding to host are measured and interpreted to give thermodynamic binding parameters


## Kinetics by calorimetry

- Kinetics:
- Reactant in syringe is titrated into solution containing other reactant or catalyst (enzyme) in calorimeter cell
- Reaction heat effects are measured and interpreted in terms of rate equations


## Kinetics by calorimetry

- Advantages
- Measures rates
- Label free (requires no chromophores or solution transparency)
- High sensitivity: $\mu$ cal $s^{-1}$ (reaction heats typically kcal $\mathrm{mol}^{-1}$, requires rates typically $1-10 \mathrm{nM} \mathrm{s}^{-1}$ )
- Automated data collection


## Kinetics by calorimetry

- Disadvantages
- High sensitivity (measures everything)
- Requires matched solvents in syringe and cell
- Cell is typically metal: less inert than glass
- Cell is not fully closed (inert atmosphere difficult)


## Kinetics by calorimetry

- Are you sure you know what your products are?
(also true for, e.g., UV-visible)


## heat flow linear with reaction rate

$$
\begin{aligned}
& \text { power }=\frac{d Q}{d t} \\
& Q=n \cdot \Delta H_{\text {app }}=[\mathrm{P}]_{\text {ooat }} \cdot V_{o} \cdot \Delta H_{\text {app }} \\
& \text { power }=\frac{d[\mathrm{P}]_{\text {doatal }}}{d t} \cdot V_{o} \cdot \Delta H_{\text {app }} \\
& \frac{d[\mathrm{P}]_{\text {lotal }}}{d t}=\frac{1}{V_{o} \cdot \Delta H_{\text {app }}} \cdot \frac{d Q}{d t} \\
& {[\mathrm{R}]_{t}=[\mathrm{R}]_{l=0}-\frac{\int_{0}^{t} \frac{d Q}{V_{o} \cdot \Delta H_{\text {app }}}}{d t}}
\end{aligned}
$$

- remaining reactant concentration from extent of reaction



## Rate as function of [reactant]



Michaelis Menten


$$
\frac{d[\mathrm{P}]}{d t}=k[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}[\mathrm{C}]^{\mathrm{c}}
$$

