Techniques for Data Collection calorimetry

Calorimeters

POC4SOC

 Technique described using automated commercially available calorimeters but other setups feasible

Isothermal titration calorimetry

- Often used to study binding:
 - Guest in syringe is titrated into host in calorimeter cell

POC4SOC

 Heat effects of guest binding to host are measured and interpreted to give thermodynamic binding parameters

Kinetics by calorimetry

- Kinetics:
 - Reactant in syringe is titrated into solution containing other reactant or catalyst (enzyme) in calorimeter cell

POC4SOC

 Reaction heat effects are measured and interpreted in terms of rate equations

POC4SOC

Kinetics by calorimetry

- Advantages
 - Measures rates
 - Label free (requires no chromophores or solution transparency)
 - High sensitivity: μcal s⁻¹ (reaction heats typically kcal mol⁻¹, requires rates typically 1-10 nM s⁻¹)
 - Automated data collection

Kinetics by calorimetry

POC4SOC

- Disadvantages
 - High sensitivity (measures everything)
 - Requires matched solvents in syringe and cell
 - Cell is typically metal: less inert than glass
 - Cell is not fully closed (inert atmosphere difficult)

Kinetics by calorimetry

POC4SOC

• Are you sure you know what your products are? (also true for, *e.g.*, UV-visible)

heat flow linear with reaction rate

POC4SOC

$$power = \frac{dQ}{dt}$$

$$Q = n \cdot \Delta H_{app} = [P]_{total} \cdot V_o \cdot \Delta H_{app}$$

$$power = \frac{d[P]_{total}}{dt} \cdot V_o \cdot \Delta H_{app}$$

$$\frac{d[P]_{total}}{dt} = \frac{1}{V_o \cdot \Delta H_{app}} \cdot \frac{dQ}{dt}$$

$$[R]_t = [R]_{t=0} - \frac{\int_0^t \frac{dQ}{dt} dt}{V_o \cdot \Delta H_{app}} \cdot$$

NJB

Rate as function of [reactant]

