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Some issues in adsorption kinetics
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Adsorption kinetics in micellar solutions
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Liquid jet

• R0 = 250 – 750 μm
• u0 = 1 – 3 ms-1

• Re = 1200 – 2000
• Length = 5 – 10 cm
• 1 – 10 mM
• Surface age = 1-100 ms

r

z

0R

0u



Nonionic Surfactants in the Liquid Jet

CnE8 = CH3(CH2)n-1(OCH2CH2)8OH 1 mM
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Surface Excess of Nonionics in Jet
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Can micelles break down fast enough?
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Conventional mechanism for micelle breakdown

• Redistribution of surfactant between aggregates occurs by step-wise 
addition and loss of monomers

• Set of parallel differential equations governing the aggregate distribution 
known as the Becker-Döring equations (1935)
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Aniansson and Wall solution
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1) Becker-Döring mechanism

2) three distinct regions in size distribution
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Aniansson, EAG & Wall SN, J. Phys. Chem. 1974 , 78, 1024



Aniansson and Wall solution

SLOW: Complete micelle breakdown. Rate determined by quantity of material in 
region 2.
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C14E8: cmc = 0.01 mM

N = 120

Breakdown kinetics of C14E8

If τ2 is so long, how can the surfactant adsorb?

τ1 ~ 20 μs

τ2 = 4 s



1 mM C14E8

0.1 mM C12E8

+ 1/30 mM
CTAB

+ 1/40 mM
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Can micelles adsorb without breaking down?

N+ Br- CTAB: cmc = 0.9 mM



Micelle kinetics far from equilibrium
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Near a fresh surface, the monomer concentration may be much 
less than the cmc.  Are micelle kinetics the same near a surface 
as in the bulk solution?



Back to Becker-Döring ...

• Adsorption step occurs at a rate that is close to diffusion-controlled

• Desorption rates determined by the thermodynamic stability of 
aggregates of different sizes

• Need to evaluate the chemical potential of a monomer in a micelle as a 
function of the aggregation number, g

• Use a semi-empirical method known as ‘molecular thermodynamics’ to 
determine the free energies of micelles
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Size distributions for C12E8

For 4mM C12E8 Calculated cmc and aggregation number are excellent

Size distribution gives Aniansson and Wall relaxation times τ1 = 2 x 10−6 s
τ2 = 100 years
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Stochastic breakdown simulations

Consider a single micelle surrounded by monomers
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When cmon = cmc the 
probability of complete 
breakdown is very small



Stochastic breakdown simulations

When cmon < cmc the 
probability of complete 
breakdown increases
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Treat the aggregation number as a ‘reaction coordinate’.
Consider an N-mer with free energy breaking down into a g-
mer with energy

/G kT
disk ve−Δ=

‡

Provided that breakdown rate is 
slow compared to τ1, there will be a 
quasi-equilibrium of aggregates 
with sizes greater than g‡.  We can 
therefore use transition state theory 
to write

What happens when the monomer 
concentration is less than the cmc?

Transition state theory
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Frequency factor in TST

l is the ‘width’ of the transition 
state

First guess: (dk gν = ‡ )

This guess overestimates the rate, since the transition state is ‘flat’

G
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Treat motion over transition state as diffusive, with a step time of (dk g‡ )

2(dk g lν ‡ ) /Then



Micelle lifetimes

• Micelle lifetimes are very strongly dependent on the size of the perturbation to 
the monomer concentration: for C14E8, the dissociation rate varies by 18 orders 
of magnitude!
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Stopped flow measurements of micelle breakdown

The breakdown of C12E8 micelles at 293 K following 2-fold dilutions

• Breakdown occurs on the sub-second timescale 

• Rate increases with increasing bulk concentration
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Merge-release mechanism
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Predictions of merge-release model

• Micelles break down on the sub-second timescale
• Relaxation rate increases with increasing bulk concentration, 

as observed in the stopped flow experiment

Relaxation to equilibrium in C12E8 solutions following 2-fold 
dilutions
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Conclusions

• Micelles can adsorb to an interface at a diffusion-controlled rate 
without first breaking down into monomers.

• The break-down rate for micelles of nonionic surfactants is an 
extremely strong function of the size of the perturbation

• A combination of stochastic simulations and a transition-state 
approach allows the calculation of breakdown rates by the 
Becker-Döring mechanism over 20 orders of magnitude in rate.

• The Becker-Döring mechanism does not provide a viable route 
for micelle break down at monomer concentrations near the cmc

• Micelle fusion followed by Becker-Döring decay is a possible 
alternative mechanism for micelle break down

• These results have significant implications for kinetic processes 
in micellar systems
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