desmet ballestra

FUTURE PROSPECTS FOR PALM OIL PROCESSING

Dr. V. Gibon, Desmet Ballestra Group, Zaventem, Belgium

Palm Oil - The Sustainable 21st Century Oil 23-24 March 2009 The Royal Society, London, UK

De Smet Presentation

Composition of Crude Palm Oil

- Produced at oil mill by cooking, pressing and clarification.
- Quality of the crude oil affects:
 - Efficiency and yield of the refining.
 - Quality of the fully processed oil.
- Beside triacylglycerols, multitude of chemical entities, some with actual or potential value:
 - Free fatty acids (FFA) and partial acylglycerols.
 - Oxidation products and metal traces.
 - Phosphatides and glycolipids.
 - Tocopherols and tocotrienols.
 - Carotenoids.
 - Sterols, methyl sterols, triterpenes/isoprenoid alcohols, hydrocarbons.

Refining Practices

Physical refining:

- Higher oil yield.
- Use of less chemicals and water; less effluent.
- Reduction of environmental impact.

Final choice depends on:

• Quality and acidity of the crude oil

(wide range of undesirable products more easily removed by chemical refining)

- Ability to get rid of soapstocks.
- Local environment legislation.

Crude palm oil with high acidity, low phosphatides, high catotene:

- Physical refining is preferred (operating costs and refining losses).
- The process can be optimized (retention of minor components (tocos)).

Chemical refining still used at a limited capacity.

	•		-	C-	
		9	x	1a	10
•		•	-	100	

Quality Specifications

Special quality Std quality I Std quality I (SQ) grade 3.5 2.5 5.0 FFA (% max) 0.25 0.25 0.25 M and I (% max) 2.0 **PV** (meq O_2/kg max) -AnV (max) 4.0 2.8 2.2 **DOBI** (min) 2.5

	Special grade	Lotox	Std
FFA (% max)	2.5	2.5	3.5
Carotene (ppm max)	-	600-700	-
Fe (ppm max)	4	4	5
Cu (ppm max)	0.02	0.2	0.2

Quality Parameters

- FFA < 3% guarantee fresh and unbruised fruits, good storage and transportation.
- Freshly expelled crude palm oil allows low hydrolysis and oxidation.
- High FFA is usually combined with high Fe and Cu levels; Fe and Cu have high pro-oxidant potential.
- Low grade crude palm oils suffers auto-oxidation of carotene.
- → DOBI (Deterioration Of Bleachability Index) [ISO 7932:2005]: Good test to assess crude palm oil quality.

DOBI = UV absorbance (446nm)/ UV absorbance at 269 nm carotene oxidation products DOBI above 2.5 (easily refined) [above 3: very satisfactory quality]. DOBI between 2.0 and 2.5 (unpredictable). DOBI below 2.0 (difficult to refine).

desmet ballestra

DOBI of Crude Palm Oil and Color of the Refined Oil

Crude Palm Oil	Bad grade	Poor grade	Poor grade	Poor grade	Fair grade	Good grade
FFA (%)	7.21	4.32	3.54	4.91	2.79	1.90
DOBI	1.34	1.76	2.02	2.23	2.67	3.13
$PV \pmod{O_2/kg}$	2.33	3.79	3.15	3.54	0.36	1.03
RBD Palm Oil						*
Lovibond (5"1/4)	3.1R/ 33Y	3.0R/ 35Y	2.2R/ 20Y	2.0R/ 20Y	1.3R/ 15Y	1.4R/ 15Y

Heat-bleached palm oil with color below 2R can only be produced when crude palm oil has a DOBI above 2.5.

Deodorisation: crucial refining stage, important effect on final oil quality

- Bland taste and smell
- Low FFA and no hydrolysis
- High oxidative stability
- Light and stable color
- (Removal of contaminants)

- Formation of trans FA
- Polymerisation
- Acyl-migration (intra-esterification)
- Degradation of natural vitamins and anti-oxidants

Improved Deodorisation

Low "trans" content
Retention of minor components

Principle of Dual Temperature Deodorizer

- 1) Moderate temperature long time (stage 1)
 - Mild deodorisation and moderate stripping
 - deodorisation and deacidification -
- 2) High temperature short time (stage 2) Final stripping and heat bleaching
 - controlled stripping of valuable minor components -

High/low or Low/high

De Smet Presentation

Improved Deodorisation Recovery of valuable by-products

Double Condensing System

- Increases acidity of the fatty acid distillate
- Recovers valuable by-products

PFAD (fatty acid distillate)	Chemical Refining	/	Physical Refining	DCS	
FFA (%)	33-50	80-85	88.0	98.1	
Neutral oil (%) MAG (%) DAG (%) TAG (%)	25-33	5-10	2.0 0.7 8.0	0.7 0.05 0.1	
Unsap. (%) (tocos, sterols)	25-33	2-8	^{x,} , 2.0	<1	

10x less waste water

Nearly no motive steam ; higher electricity consumption

Specially Refined Palm Oil

desmet ballestra

Golden Palm Oil (physically refined):

Dual temperature/low pressure (ice condensing vacuum)

	RBD Palm Oil Ref.	Golden Palm Oil A	Golden Palm Oil B	Golden Palm Oil C	Golden Palm Oil D
FFA (%)	0.07	0.20	0.07	0.08	0.07
Lovibond 5"1/4 (R/Y)	2.5/25	11.6/70	6.2/50	4.8/50	4.1/42
Tocos (ppm)	545	709	671	630	699
OSI (h at 97.8°C)	70.5	61.5	63.0	50.6	53.4

Specially Refined Palm Oil

desmet ballestra

High Vitaminic Palm Oil (chemically refined):

	Crude	Degum. and Neutr.	Degum., Neutr. and Deod.
FFA (%)	2.56	0.06	0.03
Phosphorus (ppm)	16	3	< 1
DOBI	3.1	-	-
Carotene (ppm)	580	579	1.0
Tocos (ppm)	733	679	566

Thermal bleaching at lower temperature (+ Dry fractionation)

Red Cooking Palm Oils: Carotino Cooking Oil, Nutrolein Golden Palm Oil, Sioma Oil, ...

Carotene (ppm)	600-800	Total tocopherol (ppm) α- tocopherol	227 202	
Tocos (ppm)	700-900	β- tocopherol γ -tocopherol	- 25	
		 Total tocotrienol (ppm)α- tocotrienolγ-tocotrienolδ-tocotrienol	656 188 407 61	

Specially Refined Palm Oil

White Soaps from Physically Refined Palm Oil

High Quality Crude Palm Oil (DOBI > 3) + Optimized Refining Conditions						
Target:	RBD Oil Color	Saponification Soap Color				
Saponification color < 3R (Lovibond 5"1/4)	(R Lovibond 5"1/4)	(R Lovibond 5"1/4)				
Conditions 1	0.9	3.6				
Conditions 2	0.7	2.8				
Conditions 3	0.6	2.5				

De Smet Presentation

De Smet Presentation

Crystallization developments

- two approaches: "slow" crystallisation / long cycle (Tirtiaux)

"fast" crystallisation / short cycle (De Smet)

- semicontinuous (batch) to continuous
- high shear, low shear (agitation) vs static (block crystallisation)

 Image: agitation
 Image: agitation

desmet ballestra

Dry Fractionation Of Palm Oil

Membrane press filter developments

Any development in press filtration?

Bigger size \rightarrow 25m3

Bigger plates \rightarrow 2x2m

Higher pressure \rightarrow 50 bar

Dry Fractionation Of Palm Oil

Low Shear Crystalliser (special cooling surface configuration)

Near static crystallisation

2007/03/14 09:41 pm

Heterogeneous TAG distribution \rightarrow separation of compositionally distinct fractions

Special products: CBE High POP Fractions

Signicative enrichment of POP in the Hard PMF

%	ΡΟ	POI	SPMF	SPMF	HPMF	HPMF	СВ
	IV 52	IV56	IV 46	IV 45	IV < 35	IV < 35	
DAG	5.0	5.2	3.8	3.6	2.0	2.3	
PPP	5.2	0.4	0.2	0.8	0.9	2.0	
StOSt	0.3	0.2	1.1	0.9	1.3	1.1	26
POSt	5.0	5.0	9.3	8.5	11.0	12.1	37
POP	29.3	29.9	48.7	47.8	66.0	64.0	18
					*****	***************	

Special products: CBE High POP Fractions

Solid fat content profile similar to Cocoa Butter

Influence of DAGs on Final Product Quality

0

5

10

Temperature (°C)

15

Influence of DAGs on Final Product Quality

Palm Olein IV 56-57

EIE = <u>RANDOM</u> re-distribution of FA on the glycerol:

→ improved oxidative stability (iso chemical interesterification)

Enzymatic Interesterification: "low trans" Commodity Fats

- Continuous process: less suitable in case of many stock changes.
- Used in fixed bed for better process economy.
- Simple, clean and safe process (70°C).
- Limited cross contamination.
- Increased stability of the enzyme \rightarrow 'economical' operating costs.
- No side reactions, no post-bleaching.
- Less oil losses.
- Better oxidative stability.

EIE = <u>Regio-selective</u> re-distribution of the FA on the glycerol: → sn 1,3 selective enzyme

- Confectionery fats (high SUS: CBE; anti-blooming: BOB)
- Infant formula (high UPU, P in sn 2): readily absorbed by infants
- Easily absorbable and low calory fats (MedUMed)

De Smet Presentation

Take home messages:

- Rich in minor components (tocopherols and tocotrienols (vitamin E) and carotenoids (alpha and beta carotene)) impart unique nutritional properties that need to be preserved
- Processing duality: target unwanted side effects
 - Improved refining technologies:
 - **Dual Temperature, Double Condensing, Ice Condensing**
- Crude oil quality
 - Low Acidity, High DOBI, Low partial acylglycerols
- Easily « fractionable » → commodity fats + special products (CBE) New fractionation developments to improve quality and yield
- Feedstock for enzymatic interesterification
 - **Commodity fats (margarines and shortenings**
 - Special products (CBE, infant formula, ...)

Science behind Technology

Tankyouvery much for your attention

