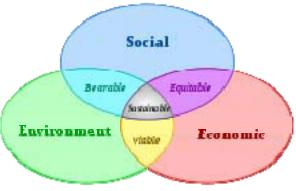


Rob Terrell, ABB Engineering Solutions

28 October 2010

Managing Water Responsibly in the Process Industries

Topics

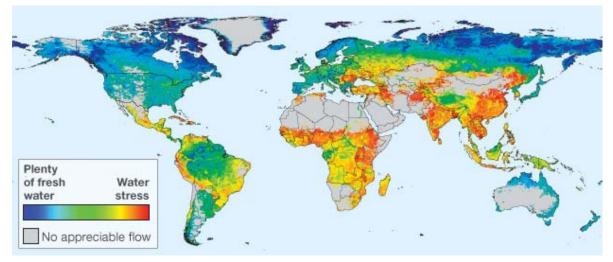

- What is Responsible water use?
- Is there enough water to go round?
- Alternative water supplies for industry
- Reducing demand
- Drivers for change
- Getting started
- How much can we save?
- What can we do better?

Sustainable Vs Responsible

- Sustainability has become the buzz word but what does it mean?
- Definitions refer to 3 components
 - Economic
 - Environmental
 - Social
- But definitions of "Sustainable Water Use" are too vague - or maybe too political
- Allows users to choose their own definition

 normally Economic
- Result is slow progress, no ownership
- Prefer to use the term Responsible
 - And to challenge each person to be responsible for water use in their industry.

Adams, W.M. (2006). "The Future of Sustainability: Re-thinking Environment and Development in the Twenty-first Century."


Water, water everywhere ...

- There is no shortage of water in the world
- There is more than enough to satisfy all our needs
 - Human consumption
 - Agricultural
 - Industrial
- Unfortunately the vast majority is present as sea water or in the polar ice caps and is not readily available
- There is a shortage of fresh, accessible, renewable water
 - Less than 0.5 % of the water in the world
- It is not evenly distributed and often arrives inconveniently
 - Large geographical areas with too little water and with too much water
- And, if the climate scientists are correct, the patterns of rainfall and fresh water availability will change ...

Future water shortage?

 The BBC recently produced a series of articles on their website showing a map of present "water scarcity" showing much of the USA, Europe to be "under high stress"

- But then commented that "when the impact of the infrastructure that distributes and conserves water is added in – the "managed" picture – most of the serious threat disappears from these regions."
- It is those regions without the distribution infrastructure which face the biggest threat.

Who uses all the water?

• Pattern of usage:

Agricultural use	~ 70 %
Municipal / Domestic	8 - 15 %
Industrial	15 – 22 %

- Exact values depend on definitions, but
- Remarkably consistent between developed and developing countries
- With
 - Population growth
 - Economic development
 - Climate change
 - something is going to have to give
- Present supply-based water industry will be constrained by water availability and cost of distribution
- Either need to reduce demand or look for alternative sources...

What are the alternatives? Desalination

- There are well established processes to produce fresh water from sea water
 - Thermal desalination
 - Membrane desalination
- Widely practiced where there are no alternatives
 - Middle East, Africa
- But the water produced is more expensive than abstraction from rivers, lakes and wells
- It appears that we would prefer to use non-renewable sources of water such as deep wells rather than pay more for water
- It may make economic sense, but is this Responsible?

What are the alternatives? Reusing Municipal Waste Water

- Ready supply of partially purified water
- Tertiary treatment processes established
- Still meets public resistance due to "yuck" factor
 - But Singapore blend NEWater back into Municipal supply
 - In several area in the US, water "recharge and recovery" is used
 - And Londoners use water abstracted from The Thames...
- One of these supplies has been through a membrane
 - Which one would you rather drink?
- Industry has no such emotional constraints
 - Eraring PS in NSW uses tertiary treated sewage as their sole water source
 - Peterborough PS also use tertiary treated sewage
 - Palo Verde Nuclear Plant uses effluent and reclaimed water from Phoenix for its cooling systems
 - Brisbane supply only tertiary treated sewage to some of its industrial areas

What are the alternatives? Using Grade 2 and Grade 3 waters

- Does industry need to use potable water?
 - Potability is not a property which (most) industry needs
- Industry needs a water supply which, above all, is reliable
- We would also like the water we use to be
 - Free from suspended solids
 - Low in organic contamination
 - Microbiologically "clean"
 - Of stable ionic composition (ideally)
- Processes used in the production of potable water can (largely) achieve this -
 - But we could also choose to operate these processes ourselves
- The key challenge is whether it is Responsible to use Grade 1 water sources for industrial supply?
 - Or should we leave these for domestic consumption?

We are where we are – or are we?

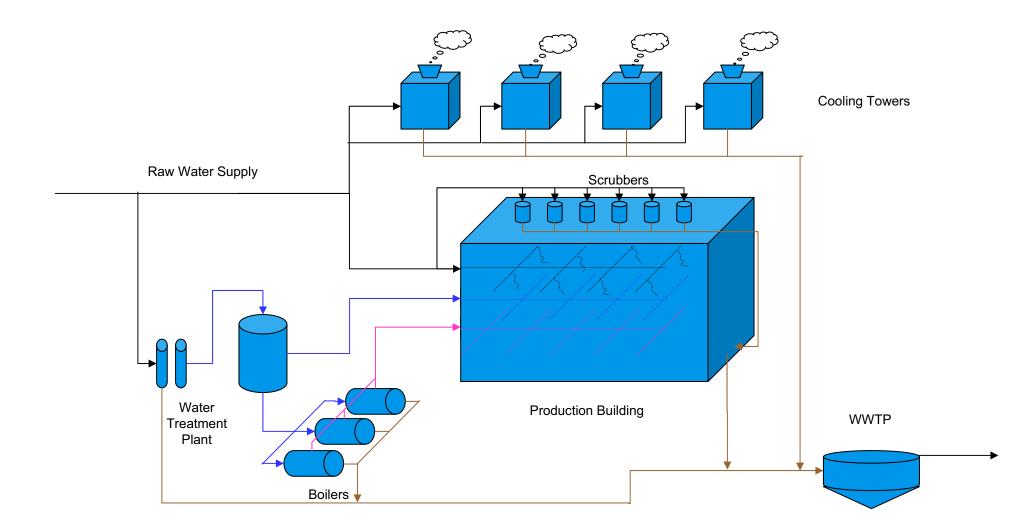
- It is easy to rely on the Water Companies to provide our water
 - Economies of scale, installed distribution system, subsidising potable water users, able to negotiate discount for "bulk" usage, etc
- And, of course, it makes sense for us to continue to use the existing infrastructure – for now
 - Rapid changes would distort the market and incur extra costs in the short term
- But it is important to recognise that our present system of supply management of water is not Responsible
 - And to make changes for the future
 - Voluntarily, in our own timeframe
- There are many alternative sources of lower grade water which could be successfully treated to a suitable quality for industrial use
 - By large users for their own use
 - By third party utilities for groups of users

Is Industry playing its part?

- Industrial examples quoted are driven by water stress
- Could we be doing more even when water supply is <u>not</u> stressed?
- Do we measure our water consumption?
- Do we have actions in place to reduce our water consumption?
- Do we know what "best practice" is for our industry sector?
- Where does our water supply come from?
- Have we examined the opportunity from lower grade sources?
 - Rivers, canals?
- Do we reuse water on our plants? [Not just recirculate...]
- Do we know what our water <u>really</u> costs us?
 - Not just the cost per m³, but the total cost?
- Could we do more?
- Is our use of water Responsible?

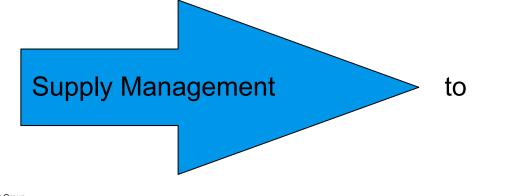
Reducing demand

- Before we spend a lot of time and money building new water treatment plants, how much water do we need?
- Unfortunately few users know.
- Water has a "value" to industry which far exceeds its cost
 - It is simply not worth taking "risks" with our processes when the water we use is so cheap
- Which is fine when there is enough water available
 - But what will you do when there isn't?
 - Even in the UK, water supply in some regions is very limited
 - East Anglia is "drier than Jordan"
 - North West suffered supply restrictions this year
- Domestic consumers take the first restrictions on supply
 - Is this Responsible when industry could do much more?

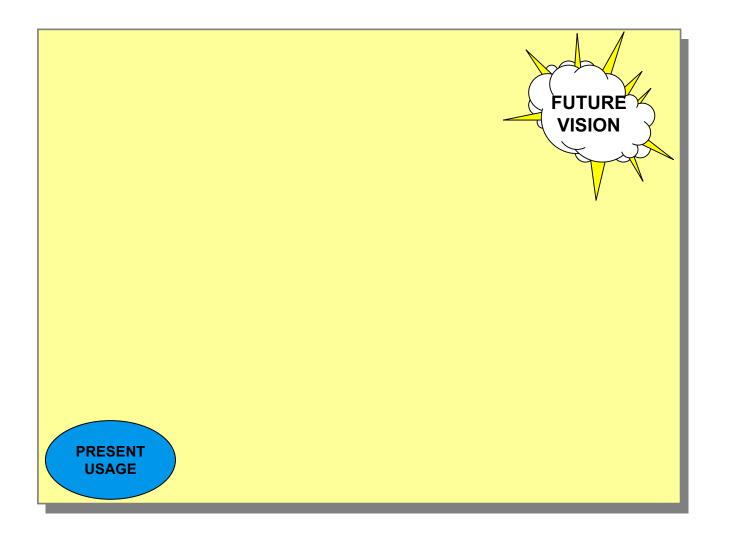


Present operation of industrial water systems

- Operated as stand-alone independent systems
 - Safe
 - "Because it is so cheap" to purchase
 - To avoid common mode problems
 - To prevent constraints on the process
- As a result we operate systems in parallel, rather than in series, e.g.
 - Condensate put to drain rather than recovering to boilers or even to cooling system
 - Clean water used for plant washing
 - "Waste" water put to drain and not reused
 - Rainwater not recovered
 - At times our discharge is "purer" than our raw water

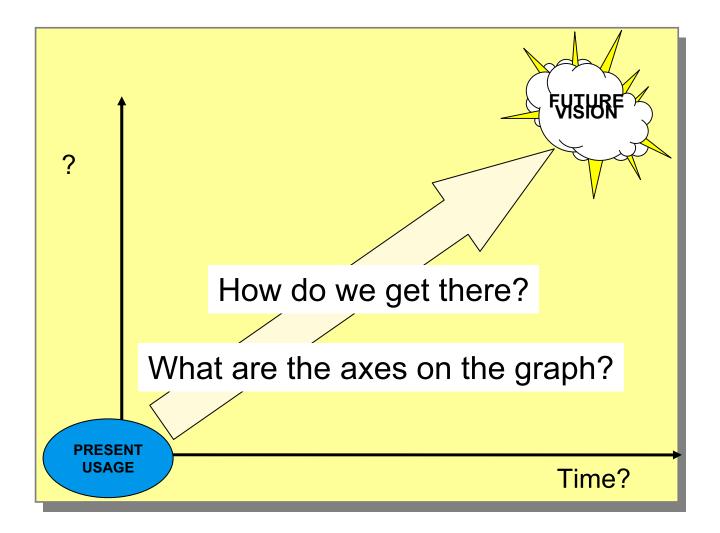

Simple water network

External drivers for change


- The drivers will not be the same for everyone. But will include:
 - Rising cost of water to buy and to discharge
 - Falling availability of water in the right place and in the right quantities
 - Stricter anti-pollution laws to reduce contamination
 - Extension of IPPC legislation to reduce fresh water consumption
 - Growing public concern for both health and lifestyle
 - "Green" pressure growing concern about sustainability
 - In response, the way in which we use water will have to change

Demand Management and Resource Conservation

How could it be?



Vision of future water management

- Core process water use protected for quality and quantity
- Fully integrated water use, reuse and recycle
- Water streams operated in series, not parallel
- Water used more than once
- Primary focus on maximising recovery of products and raw materials
- Focus on removing contaminants at source, not in end-ofpipe treatment facility
- Recovery of waste streams into more tolerant systems, e.g. cooling systems
- Water efficiency as a design specification for new plants

So what is stopping us?

Reasons for not getting started

- Present availability of water
- Cost of water and effluent treatment manageable
- Cost of investment
- Business priorities
- Technology availability
- Impact on product quality
- Don't know where to start
- Don't want to be the first
- There is no shortage of water and if there was we could develop the technology when it was needed
- Drivers and concerns will be unique to each application
 - Progress will only be made when the drivers outweigh the concerns
 - But need to be sure to consider ALL the factors

Need to consider all relevant factors Economic case

- Savings in the water purchase bill are unlikely to justify the water use reduction scheme
- But, if we consider ALL the factors, the economic case may be more attractive, e.g.
 - Availability of water for future expansion
 - Reduced capital for WWT plant expansion
 - Greater WWT plant capacity
 - Simpler technology for WWT
 - Product and raw material recovery
 - Meeting discharge consents reliably
 - Improved company image
 - Continued licence to operate, etc..
- Decision to minimise water use is Strategic and Visionary rather than Economic

Need to consider all the relevant factors Technology for water use reduction

- The good news is that we are not limited by the availability of treatment technologies and applications
- Many of the technologies are already in use for water purification
 - Clarification, filtration, GAC, iron removal, reverse osmosis, etc
- Some application development may be required
- But we will need to develop and install better measurement and control technology
 - Potential to go wrong is greater
 - Consequences of going wrong are greater

Need to consider all relevant factors You're not the first!

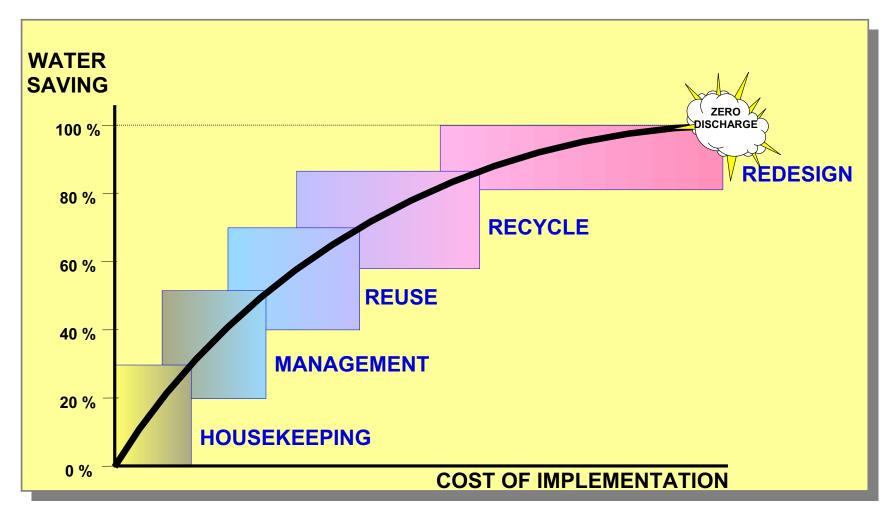
- There are many examples of successful water use reduction schemes in operation
- Largely driven by water availability
 - Changing rainfall patterns, limited water treatment plant capacity
- Or by legislation
 - e.g. California restrict use of fresh water for cooling system make-up
- Or increasingly by major shareholders
 - Want to be sure that the business in which they are investing is sustainable
- Or by industry pressure
 - Pulp & Paper
 - Brewing

But progress remains slow

- Water use reduction seen as last resort rather than strategic investment
- Piecemeal solutions forgotten as problems are "solved" and personnel move on
- Problems and solutions seen as local and specific
- Above all we need a consistent methodology to help us improve our use of water to
 - Help us with better management of the whole water network
 - Allow us to understand the costs and benefits
 - Develop reuse / recycle schemes with confidence
 - Ensure that we meet our environmental commitments
 - Convince key personnel of the benefits of improved water management
 - Provide a sustainable future

© ABB Group November 16, 2010 | Slide 23

And maintain these improvements



Water use reduction Where do we start?

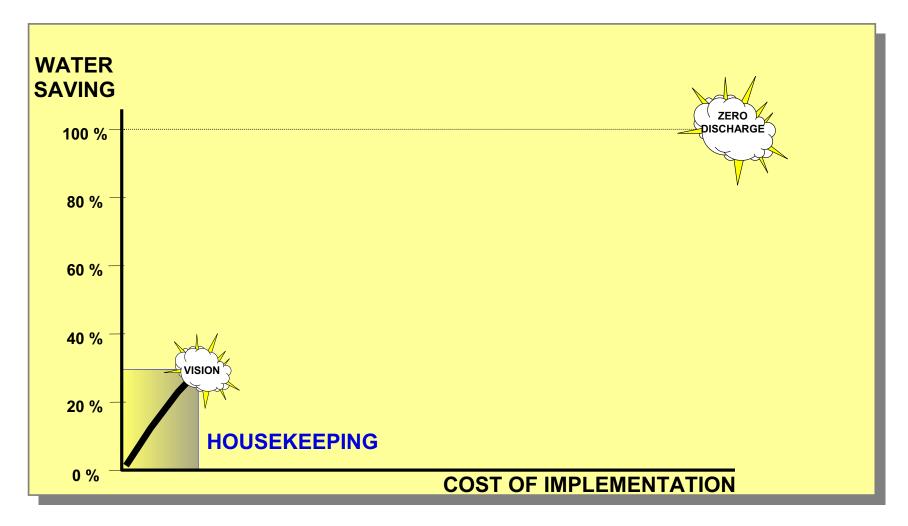
- Cannot achieve full savings in one step
 - Need to move in smaller steps which are justifiable, economic, achievable, manageable
 - Benefits are cumulative every little helps
- Start with the cheapest and most cost effective the "low hanging fruit"
 - Demonstrate benefits, savings
 - Establish correct ethos
- There is little point in installing exotic water reuse/recycle schemes if
 - You don't know how much water you are using
 - You don't control wastage
- There is a natural hierarchy of activity...

Water use reduction Hierarchy of activity

Water use reduction Six steps

- 1. Establish water balance
- 2. Improve housekeeping
- 3. Improve management of existing water users
- 4. Look for opportunities to reuse water
- 5. Install treatment processes to recycle water
- 6. Redesign the system, where possible, to eliminate the use of water

For today will focus on these steps



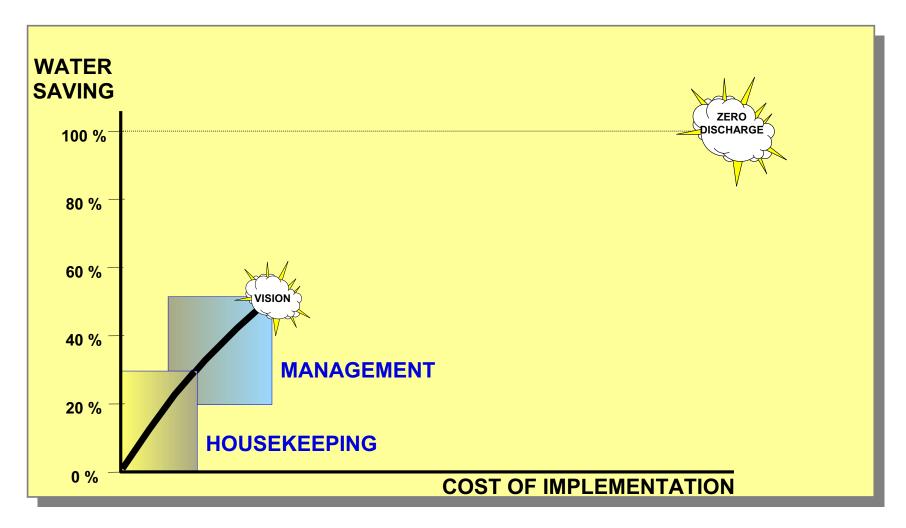
Water use reduction Step 1: Water balance

- Important to know
 - How much water you are using
 - Where you are using the water
 - Where you are losing the water
- Initial water balance may not account for more than 70 to 80% of water use
- Use of local meters essential
- Establish useful metrics
 - e.g. water used per tonne of product
- Simply establishing the water balance will often identify improvement opportunities
- If you can't measure the improvement, there will be no incentive to continue

Water use reduction Step 2: Housekeeping

Water use reduction Housekeeping

- Reductions in wastage
 - Leaks
 - Untended taps and hoses
- Better cleaning methods
 - Sprays in place of fill and drain
 - Hose triggers
- Awareness
 - Education and training



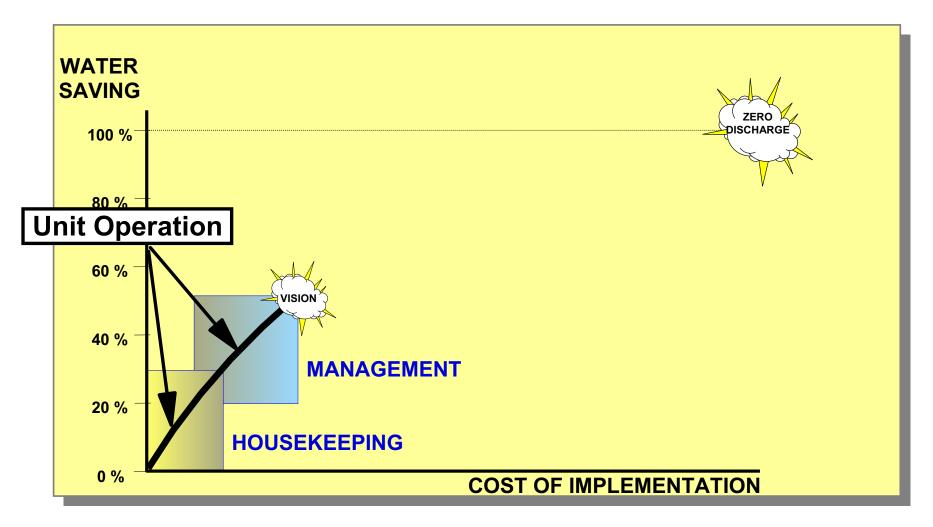
- Need to adopt policy of Zero Tolerance towards wastage
 - Essential if we are to build a platform for further improvements

Water use reduction Step 3: Management of water systems

Water use reduction Management of water systems

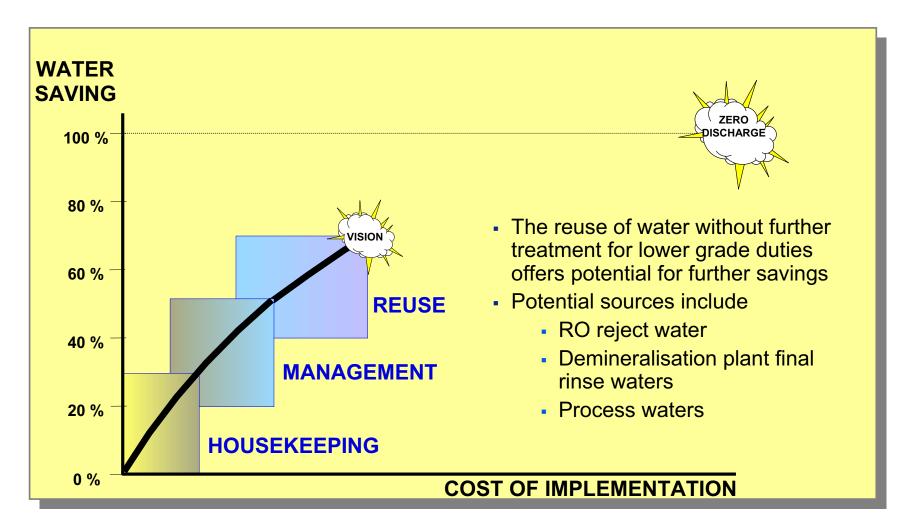
- Better operation of existing water uses
- Utilities, e.g. cooling systems, boilers, water treatment plant
 - Examine efficiency
 - Maximise cycles, reduce blowdown
 - Tighten control operate closer to the limit

- Process, e.g. product washing, essential cleaning duties between batches, product formulation
 - Reduce excess usage
 - Define and operate to required standard
 - Better techniques, e.g. counterflow washing
 - Better control and measurement
 - Local reuse of water

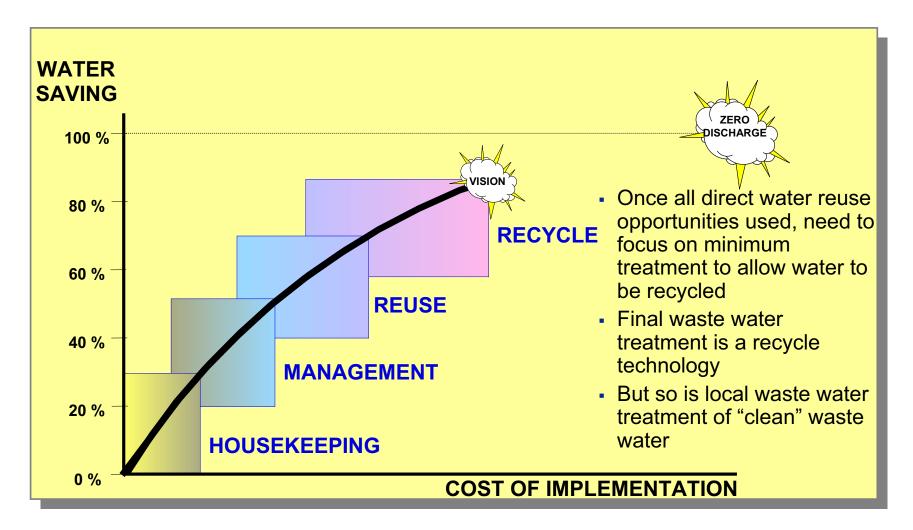


Water use reduction Housekeeping and management - 2

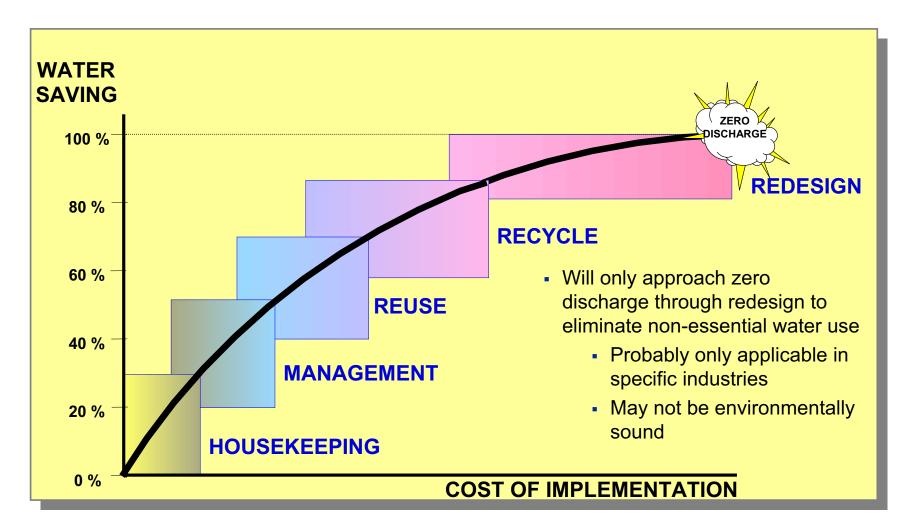
- Experience has shown that there are potential savings of 50% or even more in water use through better housekeeping and management of water systems
 - Depending on where you start and which industry you are in
- It is not worth pursuing reuse and recycle opportunities until you have implemented these
 - Danger of sub-optimisation or embedding poor practice
- Limiting activities within Unit Operations reduces overall risk and allows protection of Core Process
- Once savings have been achieved, can consider what further improvements can be justified



Water use reduction Housekeeping and management



Water reuse/recycle Step 4: Reuse of water without treatment



Water reuse/recycle Step 5: Recycle of water after treatment

Approaching zero discharge Step 6: Redesign systems with no water use

If it is so easy, why don't we do it?

- Experience has suggested that the indicative savings shown are relevant across a range of process industries, but will depend on local conditions
- But if 50% or more of water use in process industries can be saved through simple measures such as
 - better housekeeping,
 - improved management of water systems and
 - reusing "waste" water for lower grade duties why are we not doing this?
- 3 reasons:
 - Water is too cheap
 - We don't measure or report water use
 - We are worried about unexpected consequences on our core processes
- Is this Responsible?

Taking responsibility Is there a will ...?

- Achieving reductions in water use is relatively easy in practice
 - But financial justification is more difficult unless you look at the bigger picture
 - Savings in the cost of water are unlikely to support more than the simplest measures
- The problem is that, for most companies, there is no one with technical responsibility for water use
 - Until this changes, progress will continue to be slow
 - It will depend on local water shortages or
 - Individual responsibility
- So how do we encourage companies to take a responsible attitude towards water use?

Raising responsibility Possible mechanisms?

- Raising awareness/education:
 - Academic courses in universities to teach industrial water treatment as part of degree courses in chemical engineering, chemistry, environmental engineering, etc
 - Industry bodies (SCI, CIA, RSC, IChemE, etc) to promote activities to raise awareness of need to use water responsibly
- Company reporting:
 - Companies to report water usage against targets as part of environmental reporting
- and if all else fails
- Legislation:
 - Legislation to "encourage" companies to be more responsible
 - Taxing use of potable water for industrial processes
 - Requiring companies to use a set percentage of recycled water
 - Stricter reinforcement of existing IPPC legislation

Summary and conclusions

- Our present use of water is not sustainable and is not responsible
- Most problems have their origin in design due to a lack of understanding/specification during design
- Start with the easy schemes first, but don't expect that all systems will be easy!
- There are easy wins from better housekeeping and management of existing water systems
- Water reuse / recycle likely to be more important as resources decline and available water quality deteriorates
- Design methodology for reuse / recycle schemes still in its infancy
- To make real progress we need to move industrial water treatment from a "black art" to be recognised and valued activity
- And create the right environment for industrial water use

Where will water reuse / recycle fit?

- ✓ Large polluters
- ✓ High value products
- ✓ High toxicity wastes
- ✓ **Poor water availability**
- ✓ High cost water
- Inland sites
- Sites with disposal problems
- Tightening environmental legislation

- × Net generators of water
- × Processes with dilute feed streams
- × Cheap water costs
- **X** Water readily available
- X No pressing environmental constraints
- **×** Estuarine sites
- × Small water users

Power and productivity for a better world[™]

