Reducing Attrition Risk: Evolution of an \textit{in silico} “Compound Safety Evaluator”

\textit{Kevin Dack}

\texttt{kevin.dack@pfizer.com}

Sandwich Laboratories

Pfizer Worldwide R&D

Designing Safer Medicines in Discovery.

SCI, London

Thursday 17th March 2011
Introduction

• Safety is a major cause of attrition
 – Low therapeutic index (not potent enough, poor PK, high peak:trough, promiscuous).......
 – High Dose (idiosyncratic tox, active & reactive metabolites & metabolic burden...)
 – Manipulating target/pathway is unsafe (out of scope for today)

• Need to ‘flag’ earlier those compounds/series at greater risk of safety attrition.
 – Focus resource on leads/series/targets with better chemical equity
 – Save $$ and animals
Outline of Presentation

• Introduction to Compound Safety Prediction Group
• Compound Safety Evaluator v1.0
 – Criteria used & basis for scoring
 – Retrospective analysis of pre-clinical tox studies
 – Retrospective analysis of some Pfizer candidates
• Drugs on the Market
 – Impact of CSE Score and Dose size
• Compound Safety Evaluator v2.0
 – Improving predictions
• CSE vs Dose: getting better dose predictions.
Outline of Presentation

• Introduction to Compound Safety Prediction Group
• Compound Safety Evaluator v1.0
 – Criteria used & basis for scoring
 – Retrospective analysis of pre-clinical tox studies
 – Retrospective analysis of some Pfizer candidates
• Drugs on the Market
 – Impact of CSE Score and Dose size
• Compound Safety Evaluator v2.0
 – Improving predictions
• CSE vs Dose: getting better dose predictions.
Compound Safety Prediction Group

- Compound Safety Prediction Group at Pfizer
 - Based in Groton, USA & led by Bill Pennie
- Building a research program to characterize underlying mechanisms of toxicity.
- Building predictive assays (in silico or in vitro) for these mechanisms.
- Assembling these assays into a validated, predictive panel for compound testing.
- Reporting results to project teams to help define “safer” chemical space and assist teams in series & candidate selection decisions.
- Developed Compound Safety Evaluator (CSEv1.0) to generate a ‘Safety Score’ for compounds
Compound Safety Evaluator: CSEv1.0

- Goal is to help project team define safer chemical space by providing an integrated report of the safety ‘profiling’ of a compound or series.

- Decisions will always lie within project teams.
 - e.g. an acceptable risk in oncology is different to pain management.
Compound Safety Evaluator: CSEv1.0

Objective: To derive a single score to allow easy comparison of compounds across a panel of assays and properties.

- Makes use of Multi-Parameter Optimization
 - the Score is on a 0 to 1 scale with 1 = ☺ and 0 = ☹
- Used assays already available to Project teams
 - Cerep binding assays (%inhib @ 10μM)
 - Subset of 15 assays used to assess promiscuity
 - THLE cytotoxicity*
 - Genetic Tox assays (BiolumAmes & IVMN)
 - Dofetilide binding and hERG
- Incorporates knowledge from Beyond Structural Alerts work (Bio. Med. Chem. Lett. (2008), 18, 4872-4875)
 - cLogP and TPSA (3/75 guideline)
 - Basic pKa

* THLE = transformed human liver epithelial
Compound Safety Evaluator: CSEv1.0

- **MPO Scoring Methodology:**
 - CSE Score = \(\left(y_1 w \cdot y_2 w \cdot y_3 w \cdot y_4 w \cdot \ldots \right)^{1/(w_1 + w_2 + w_3 + w_4 + \ldots)} \)
 - For each assay: \(y, X_1 \) and \(X_2 \) and relative weight \(w \) were defined e.g.

\[
\begin{align*}
\text{y} &= 1.0 & \text{Monotonic Increasing e.g. THLE IC}_{50} \\
\text{y} &= 0.5 & \text{Decreasing e.g cLogP} \\
\text{y} &= 0.1 & \text{Mixed}\n\end{align*}
\]

I cannot disclose all the proprietary assay thresholds, weighting and scoring MPO at this time.
Compound Safety Evaluator: CSEv1.0

- Why only 15 CEREP assays?
- 15 targets selected due to known risks/issues - The ‘Promiscuity Panel’
- Covering GPCRs, ion-channels, transporters, PDE
- Provides a lower cost, ‘quick look’ at promiscuity
- High average inhibition of the 15 targets generally correlates with wider promiscuity
Sorted by Average %I across the 15 ‘Promiscuity Panel’ Targets. Each row is a compound.

The most promiscuous compounds across 15 targets carry on hitting multiple targets in the rest of the Full panel.

In contrast, the compounds with low average %I in the P-Panel are generally cleaner across the rest of the CERE Panel full panel.
Compound Safety Evaluator: CSEv1.0

- Representative CSEv1.0 display

- Genetic tox. risks
- THLE: Indicators of cell toxicity
- CEREP Promiscuity panel
- PhysChem properties
- Toxicophore alerts
- Potential CV safety

e.g. Paroxetine
Compound Safety Evaluator: CSEv1.0

- Retrospective Scoring of compounds that underwent *in vivo* toxicology assessment

- Analysis and ‘CSE Scoring’ of 256 compounds that were profiled in exploratory toxicology studies (primarily in rat).

- Compounds were flagged as either:
 - Clean = No ‘adverse toxicity findings’ were observed at a Cmax at or above 10μM total drug
 - Toxic = ‘Adverse toxicity findings’ were observed at a Cmax below 10μM total drug
Compound Safety Evaluator: CSEv1.0

- **Data set**: 256 compounds with *in vivo* toxicology outcomes (‘clean’ vs ‘adverse toxicity findings’ at 10μM total drug)

Some of these may be manipulating ‘unsafe’ targets/pathways or have unknown tox reasons.

CSE Score <0.75 correlates with greater risk of adverse findings at 10μM.

Legend

- Clean@>10μM
- Findings@<10μM

<table>
<thead>
<tr>
<th>Clean@>10μM</th>
<th>Findings@<10μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>84</td>
</tr>
<tr>
<td>11</td>
<td>54</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
</tr>
</tbody>
</table>

Scores

- CSE Score 0.85
- CSE Score 0.75
What About the Dose?

• High dose risks:
 – Metabolic burden (esp. liver & kidney)
 – Reactive metabolites \rightarrow covalent binding \rightarrow idiosyncratic tox?
 – DDIs

• What defines the Dose?
What Defines the Dose?

For a diverse set of compounds/target mechanisms - it is simpler to track HLM as a component of Dose

Major advances in predicting and improving HLM over last decade

Oxidative metabolism (HLM)
- Other metabolism (e.g. AO)
- Transporter clearance
- Renal clearance

Potency
- Biochemical efficiency

Dose
- C_{eff}
- Fa
- Unbound Clearance

Solubility
Permeability
307 Pfizer Candidates with CSEv1.0 & HLM

All these Launched Drugs have CSEv1.0 >0.75 & HLM Clint <100

These are inhaled or oncology candidates

HLM Clint is one component of Dose

Could some these failures have been avoided?
Pie Chart

586 Stopped Pfizer Candidates

- **0.85 < x**
 - Safety: 40%
 - ADME: 12%
 - Other: 48%

- **0.75 < x ≤ 0.85**
 - Safety: 48%
 - ADME: 12%
 - Other: 40%

- **x ≤ 0.75**
 - Safety: 65%
 - ADME: 2%
 - Other: 33%

Other reasons includes:
- Pharmacology
- Chemistry
- Biopharmaceutics
- Strategic

When CSE <0.75: Safety is given as reason for Stopping for 65% of candidates.
Total of 244 stopped due to Safety concerns – what type of Safety?
Reasons for Safety Attrition: 244 Pfizer Candidates

When CSE < 0.75:
Pre-clinical non-hepatic animal tox is clearly the main reason for attrition
When CSE >0.85:
Since 2007 fewer cpds are stopping due to safety reasons

Other reasons includes:
- Pharmacology
- Chemistry
- Biopharmaceutics
- Strategic
Outline of Presentation

• Introduction to Compound Safety Prediction Group
• Compound Safety Evaluator v1.0
 – Criteria used & basis for scoring
 – Retrospective analysis of pre-clinical tox studies
 – Retrospective analysis of Pfizer candidates
• Drugs on the Market
 – Impact of CSE Score and Dose size
• Compound Safety Evaluator v2.0
 – Improving predictions
• CSE vs Dose: getting better dose predictions.
Drugs on the Market

- What would the CSE Score of Launched Drugs look like?
- Safety is more stringent now compared to 1990 or even 2000
- Impact of Dose – we know the dose ranges that are approved
Drugs on the Market

- Data set analysed:
 - Identified all Oral Drugs launched since 1990
 - Filtered to MW <600 to remove large biologics etc.
 - Must be present in the Pfizer File
 - Must already have CEREP data generated in Pfizer database
 - Gave 157 launched Drugs for analysis (a snapshot – not comprehensive)

With this data set:
17/18 Drugs with dose >500mgs have CSE Score >0.85
(exception being Gleevec; CSE Score 0.81; Typical oncology dose 400-800mg)

Low dose (<50mg) more forgiving of potential Safety Risks (high potency → high TI)
Caveat – this is only a subset of all launched drugs
Drugs on the Market

- Focussing on the higher dose Drugs:
 - Plot lowest approved dose vs CSEv1.0 Score

With this data set:
Trend for high CSE Score required if dose has to rise.
Drugs on the Market

With this data set:
The majority of ‘high’ dose compounds are MW <450, cLogP <3, TPSA >75
Drugs on the Market

With this data set:
High cLogP and low TPSA can (historically) be successful if the dose is low
But, many of these drugs carry safety warnings – would they be approved in today’s ‘climate’?
Drugs on the Market

Higher risk CSEv1.0 Score:
e.g. Paroxetine
Initially 20mg daily
rising to max of 50mg

Lower Risk CSEv1.0 Score
e.g. Lamotrigine
Daily maintainence dose of 100-
500mg
Outline of Presentation

• Introduction to Compound Safety Prediction Group
• Compound Safety Evaluator v1.0
 – Criteria used & basis for scoring
 – Retrospective analysis of pre-clinical tox studies
 – Retrospective analysis of Pfizer candidates
• Drugs on the Market
 – Impact of CSE Score and Dose size
• Compound Safety Evaluator v2.0
 – Improving predictions
• CSE vs Dose: getting better dose predictions.
Compound Safety Evaluator: CSEv2.0

• CSEv1.0 was refined....

• The results of the 15 CEREP assays (v1.0) are summarized in a GINI coefficient, which provides a measure of compound promiscuity

• Additional proprietary cell based mechanistic assays have been included in the CSE panel of assays: e.g. mitochondrial function and apoptosis

• A Random Forest method was used to identify the assays that provide the greatest predictive value.

• CSE v2.0 uses 12 chemical and biological endpoints to generate an MPO score

I cannot disclose the assay threshold, weighting and scoring MPO at this time.
Compound Safety Evaluator: CSEv2.0

- **Data set**: Same 236 compounds with *in vivo* toxicology outcomes (‘clean’ vs ‘adverse toxicity findings’ at 10μM total drug)

CSEv2.0 Score <0.5 correlates with greater risk of adverse findings at 10μM
Outline of Presentation

• Introduction to Compound Safety Prediction Group
• Compound Safety Evaluator v1.0
 – Criteria used & basis for scoring
 – Retrospective analysis of pre-clinical tox studies
 – Retrospective analysis of Pfizer candidates
• Drugs on the Market
 – Impact of CSE Score and Dose size
• Compound Safety Evaluator v2.0
 – Improving predictions
• CSE vs Dose: getting better dose predictions.
Attrition Risk (CSE vs Dose):
Examples of Drugs on the Market

- Lamotrigine
 - CSEv2.0 = 0.88
 - Daily maintenance dose of 100-500mg

- Paroxetine
 - CSEv2.0 = 0.2
 - Initially 20mg daily rising to max of 50mg

- Attrition Risk can be mapped as a ‘value-range’ to take into account both these properties.
- Can we improve the dose prediction for hits, leads and potential drug candidates?
Improving the Oral Dose Prediction

- **Potency**
- **Biochemical efficiency**
- **C_{eff}**
- **Dose**
- **Unbound Clearance**
- **Fa**
- **Solubility**
- **Permeability**

C_{eff} is still hard to predict for new mechanism that have not been to patients.

BioPfarm-X-treme (BPX) is Pfizer’s new in-house program
- BPX-Mini for 1000s cpds to help with series selection etc
- BPX- Maxi for refined Fa and Dose prediction on selected leads

Unbound Clearance prediction is good if mainly HLM mediated, and improving with advancing knowledge of other clearance mechanisms.

Fa module is well validated (Sugano; *Expert Opin. Drug Metab. Toxicol.* (2009) 5 (3):259-293)

C_{eff} can be hard to determine without validated models or clinical data
Attrition Risk (CSE vs Dose):
Examples of Series in a Project

- Attrition Risk Grid can be used to visualise Series risks e.g.

 ★ Series 1

 ● Series 2 (Higher Dose Risk)

 □ Series 3 (Higher Safety Risk)
Summary

- Compound Safety Evaluator (CSE) is established as a tool to alert Projects to some potential safety risks of their Leads and Series.
- The impact of Dose and TI must be taken into consideration, in view of the acceptable level of risk for the given therapeutic indication.
- A proprietary *in silico* dose prediction method (BioPf arm-X-treme; BPX-Dose) has been developed, using ADME and Pharmaceutical properties. But C_{eff} is still an issue for many Projects.
- The combination of CSE Score and Dose Prediction for leads & series in a Projects (and Projects within a Portfolio) can be mapped on an Attrition Risk Grid.
Key Acknowledgements

• Compound Safety Prediction Group
 – Bill Pennie, Nigel Greene, Karen Leach, Sean Wang, Shirely Louise-May

• Non Clinical Statistics & Research Informatics
 – Shibing Deng, Jim Silva

• Computational Sciences & Data and Design Analytics
 – Eric Gifford, Simon Xi, Jackie Klug-McLeod, Daniel Ziemek, Savina Jaeger, Rishi Gupta, Chris Keefer, Bruce Lefker

• Drug Safety Research & Development
 – Krista Dobo, Bob Chapin, Bernard Fermini, Bob Mauthe, Gareth Waldron

• Medicinal Chemistry
 – Tony Wood, Alan Stobie, Andy Bell, Dave Price, Mark Gardner

• BioPfarm-X-treme
 – Stefan Steyn, Kiyohiko Sugano
The Legacy of the Pfizer R&D in Sandwich UK

Amlodipine (Norvasc™)
5-10 mg
Hypertension

Fluconazole (Diflucan™)
100-400 mg
Antifungal

Sildenafil (Viagra™)
25-100 mg prn
Impotence

Sildenafil (Revatio™)
20 mg tid
PAH

Doxazosin (Cardura™)
4-8 mg
Hypertension & BPH

Dofetilide (Tikosyn™)
<1 mg
Antiarrhythmia

Voriconazole (Vfend™)
50-200 mg
Antifungal

Dalcetrapib (Trulus™)
200 mg
HIV

Eletriptan (Relpax™)
20-40 mg
Migraine

Maraviroc (Celsentri™)
150-300 mg
HIV

Darifenacin (Enablex™)
7.5-15 mg
Incontinence