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Global Antibiotic Resistance
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vancomycin resistance
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Current Antibacterials

TetrahydrofolicAcid

DNA

DNA Gyrase
Ciprofloxacin

30S Ribosomal Subunit
Streptomycin, Oxytetracyclin

mRNA

Peptide
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Erythromycin
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Metabolism
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Bacterial Cell Wall
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CO2HH2N



Due to multidrug-resistant bacterial 
pathogens infectious disease mortality in the 

developed world is increasing!

Some pharmaceutical companies are not investing
in research into new antibacterial agents.

Current Antibacterials



How to tackle multidrug-resistant bacterial pathogens?

1. Target resistance mechanisms

Current Antibacterials

2. Search for new antibacterial agents
    with novel modes of action



How to tackle multidrug-resistant bacterial pathogens?

1. Target resistance mechanisms

We need a source of small molecules

Current Antibacterials

2. Search for new antibacterial agents
    with novel modes of action



2.18 million
shikimic acid
derivatives.

Split-Pool Combinatorial Synthesis

S. L. Schreiber et al. J. Am. Chem. Soc. 1999, 121, 9072.
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RS Bohacek, et al. Med. Res. Rev. 1996, 16, 3; MJ Owen Biotech Advantage 2002, 6.

Small Molecule Challenge

The number of possible “drug-like” molecules
has been calculated to be



RS Bohacek, et al. Med. Res. Rev. 1996, 16, 3; MJ Owen Biotech Advantage 2002, 6.

Small Molecule Challenge

The number of possible “drug-like” molecules
has been calculated to be

astronomic!
(1062 to 10200)



• Quality and, but not just, quantity counts.

• Display functional groups in three dimensions.

• There are many answers to every (biological) problem.

Structurally-Diverse
Small Molecule Collections

Small Molecule Challenge



• Natural Products

• Commercial Collections

• Diversity-Oriented Synthesis

Structurally Diverse
Small Molecule Collections



Natural Products

• Often mixtures, supply problem
• Identify active component
• Chemical derivatization difficult

Commercial Collections

• e.g. ChemBridge & ChemDiv
• Low molecular weight (ca. 350 Da)
• Few stereocentres

Small Molecule Collections



Antibacterials are different
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Diversity-Oriented Synthesis

Nature Commun. 2010, 1, 80;  Org. Biomol. Chem. 2008, 6, 1149-1158;  Science 2000, 287, 1964
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Diversity-Oriented Synthesis

Nature Commun. 2010, 1, 80;  Org. Biomol. Chem. 2008, 6, 1149-1158;  Science 2000, 287, 1964

Diversity-Oriented SynthesisCombinatorial Library Synthesis

Least Diverse Most Diverse
increasing structural diversity

All possible 
compounds

(appendage &
 stereochemical diversity)

(skeletal, appendage
& stereochemical diversity)



Diversity-Oriented Synthesis

Generating Scaffold Diversity

• Substrate-Based Approach

• Reagent-Based Approach

Nature Commun. 2010, 1, 80;  Org. Biomol. Chem. 2008, 6, 1149-1158
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 Other examples of the use of a densely functionalized molecule 
strategy to generate sca! old diversity in a DOS context can be found 
in recent reports and reviews 18,51 – 54 .   

  Reagent-based DOS using a pluripotent functional group strategy   .   
A pluripotent DOS is dependent on the use of a synthetically 
versatile starting material that is capable of undergoing a wide 
variety of di! erent chemical transformations and has the poten-
tial to be converted into several products with di! erent mole-
cular skeletons through the variation of reagents alone 3 . " ese 
products should themselves contain versatile functionality and 
thus be suitable for further diversi# cation, preferably in further 
complexity-generating and branching reaction sequences. " is 
provides a means to augment the skeletal diversity of the library 
further and ideally o! ers scope for the introduction of stereo-
chemical diversity 3 . 

 An example of sca! old diversity generation using a pluripotent 
functional group is provided by the work of " omas  et al  55 . " is 
DOS involved the use of solid-supported phosphonate  12  as a start-
ing unit ( Fig. 5 ) 3 . " e imidazolidinone portion of  12  (R group in 
 Fig. 5 ) allowed the attachment of compounds at each stage of the 
synthesis to a novel silyl-polystyrene solid support resin 56 , which 
simpli# ed puri# cation during library synthesis. 

 " e # rst step of DOS (Step 1,  Fig. 5 ) involved  E -selective 
Horner – Wadsworth – Emmons reactions of  12  with a variety of 
aldehyde building blocks (building block diversity) to deliver 12 
 α , β -unsaturated acyl-imidazolidinones  13  3 . In the second step of 
DOS (Step 2), the pluripotent nature of  13  was exploited in three 
catalytic enantioselective divergent reaction pathways (stereochem-
ical diversity), namely, (1) (2    +    3) cycloaddition (reaction b); (2) 
dihydroxylation (reaction c); and (3) (4    +    2) cycloaddition (reac-
tion d), to furnish molecules on the basis of three molecular frame-
works (skeletal diversity) 3 . " e next step of DOS (Step 3) involved 
a series of branching reactions to further diversify these substrates. 
For example, the norbonene derivatives  14  served as versatile sub-
strates for a series of branching reactions (reactions l to o) to create 
# ve di! erent molecular sca! olds (skeletal diversity). Of particu-
lar note was an interesting tandem ring-closing-opening-closing 
metathesis reaction (reaction o) that generated skeletally diverse 
tricyclic products  15a  (7-5-7) and  15b  (7-5-8) 3 . A fourth stage 
of reactions (Step 4) was carried out in some cases to introduce 
additional complexity and diversity. In the # nal step of the DOS 
(not shown), the compounds were cleaved o!  the solid sup-
port using a variety of reagents (appendage diversity) 3 . Using the 
chemistry shown in  Figure 5  and a limited number of struc-
turally diverse building blocks, a DOS of 242 small molecules was 
achieved, which have 18 molecular frameworks among other 
unique structural features. Many of these frameworks have no 
known representation in nature, highlighting the capability of this 

DOS approach to generate products that populate new, unexplored 
regions of chemical space 3 . 

 Other examples of the use of a pluripotent functional group 
strategy to generate sca! old diversity in a DOS context can be found 
in recent reports and reviews 18,49 .   

  ! e substrate-based approach   .   " e substrate-based approach to-
wards sca! old diversity is exempli# ed in a recent DOS pathway 
developed by Morton  et al.  57  ( Fig. 6 ). " eir method involved the 
attachment of pairs of unsaturated functionalized building blocks 
(so-called  ‘ propagating ’  and  ‘ capping ’  groups) to a $ uorous-tagged 
linker to generate a wide variety of substrates with a dense array of 
structural features (appendage, functional group and stereochemi-
cal diversity) 9 . Each of these substrates contained a pair of terminal 
alkene groups (one from the linker, one from the  ‘ capping ’  building 
block), together with additional unsaturated moieties. Treatment 
with a suitable metathesis catalyst led to intramolecular cyclization 
reactions that  ‘ paired ’  these unsaturated functional groups together 
to generate a dense matrix of skeletally diverse cyclic products 9 . 
" e elegant design of the $ uorous-tagged linker ensured that only 
cyclized products were released from the $ uorous tag during the 
metathesis process. Consequently $ uorous solid-phase extraction 
provided a rapid, generic method for product isolation 9 . " e overall 
result was the DOS of a library of 96 molecules (each generated in 
no more than # ve discrete steps) based on a total of 84 distinct mo-
lecular sca! olds. " e compounds can be considered to be natural 
product-like, in the sense that a diverse range of di! erent 3D fea-
tures and functionalization motifs are present (stereochemical and 
functional group diversity). It is noteworthy that the majority of li-
brary sca! olds ( ~ 65 % ) are novel. " is work arguably represents the 
current state of the art for sca! old diversity generated in a synthetic 
small-molecule library.   

  ! e build-couple-pair strategy   .   Recent work by Nielsen and 
Schreiber 30  has identi# ed a common strategic feature that is present 
in many DOS pathways. " is is the so-called build / couple / pair 
(B / C / P) three-phase strategy that is outlined in  Figure 7  (ref.   30). 
" e pair  ‘ phase ’  is a folding-type process that provides the basis for 
the generation of skeletal diversity. 

 For example, the DOS pathway outlined in  Figure 4  can be ana-
lysed in terms of a B / C / P strategy. " e  ‘ build ’  and  ‘ couple ’  phases 
involve assembly of amino alcohols  1a – d . " e subsequent reagent-
controlled skeletal diversi# cation reactions serve as  ‘ pair ’  phases 
in which di! erent combinations of the moieties of a substrate (for 
example,  1a ), both polar and nonpolar, are  ‘ paired ’  in functional 
group-speci# c reactions. For example, the ruthenium-based catalyst 
selectively pairs the nonpolar alkene and alkyne groups of  1a , ena-
bling the metathesis reaction leading to  2 , whereas sodium hydride-
mediated endocyclic nucleophilic aromatic substitution selectively 

   Figure 3    |         DOS approaches to scaffold diversity. ( a ) The reagent-based approach to scaffold diversity. ( b ) The substrate-based approach to scaffold 
diversity 3,10 . A  σ  element is an appendage on a starting material that  ‘ pre-encodes ’  skeletal information (that is, a skeletal information element) such that, 
under a certain set of reaction conditions, a product containing a different, distinct molecular skeleton is generated 19 .  
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Diversity-Oriented Synthesis

• Substrate-Based Approach
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Monica Diaz Gavilan,  Warren Galloway, Kieron O’Connell, James Hodgkinson Chem. Commun. 2008, 4962-4964
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• Substrate-Based Approach
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Monica Diaz Gavilan,  Warren Galloway, Kieron O’Connell, James Hodgkinson Chem. Commun. 2008, 4962-4964
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Monica Diaz Gavilan,  Warren Galloway, Kieron O’Connell, James Hodgkinson Chem. Commun. 2008, 4962-4964
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Monica Diaz Gavilan,  Warren Galloway, Kieron O’Connell, James Hodgkinson Chem. Commun. 2008, 4962-4964
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Monica Diaz Gavilan,  Warren Galloway, Kieron O’Connell, James Hodgkinson Chem. Commun. 2008, 4962-4964
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Monica Diaz Gavilan,  Warren Galloway, Kieron O’Connell, James Hodgkinson Chem. Commun. 2008, 4962-4964
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• Substrate-Based Approach
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Generating Scaffold Diversity

• Substrate-Based Approach

• Reagent-Based Approach

Nature Commun. 2010, 1, 80;  Org. Biomol. Chem. 2008, 6, 1149-1158



Diversity-Oriented Synthesis

• Densely Functionalized Molecule

• Pluripotent Functional Group

Nature Commun. 2010, 1, 80;  Org. Biomol. Chem. 2008, 6, 1149-1158

• Reagent-Based Approach



Diversity-Oriented Synthesis

Proc. Natl. Acad. Sci. USA 2011, 108,  ASAP

• Densely Functionalized Molecule Strategy 

Albert Isidro Llobet,  Tiffanie Murillo,  Paula Bello,  Agostino Cilibrizzi,  Warren Galloway,  James Hodgkinson
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Diversity-Oriented Synthesis

Proc. Natl. Acad. Sci. USA 2011, 108,  ASAP

• Densely Functionalized Molecule Strategy 
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• Densely Functionalized Molecule Strategy 
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• Densely Functionalized Molecule Strategy 
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Diversity-Oriented Synthesis

• Densely Functionalized Molecule

• Pluripotent Functional Group

Nature Commun. 2010, 1, 80;  Org. Biomol. Chem. 2008, 6, 1149-1158

• Reagent-Based Approach



Diversity-Oriented Synthesis

Org. Lett. 2010, 12, 2806-2809;  Org. Biomol. Chem. 2011, 9, 504-515.

• Pluripotent Functional Group Strategy 

Hannah Sore,  Christine Böhner,  David Blackwell,  Luca Laraia,  Matthew Scott,  
Patrizia Logoteta,  Cora Prestinari,  Katherine Williams,  Warren Galloway
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Diversity-Oriented Synthesis

Org. Lett. 2010, 12, 2806-2809;  Org. Biomol. Chem. 2011, 9, 504-515.

• Pluripotent Functional Group Strategy 

Hannah Sore,  Christine Böhner,  David Blackwell,  Luca Laraia,  Matthew Scott,  
Patrizia Logoteta,  Cora Prestinari,  Katherine Williams,  Warren Galloway
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Diversity-Oriented Synthesis

Org. Lett. 2010, 12, 2806-2809;  Org. Biomol. Chem. 2011, 9, 504-515.

• Pluripotent Functional Group Strategy 

Hannah Sore,  Christine Böhner,  David Blackwell,  Luca Laraia,  Matthew Scott,  
Patrizia Logoteta,  Cora Prestinari,  Katherine Williams,  Warren Galloway
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Diversity-Oriented Synthesis

• Pluripotent Functional Group Strategy 
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CoAS Me

O

Acetyl coenzyme A
biosynthetic

'two-carbon' starting unit

>20
steps fatty acids

polyketides
steroids
terpenes
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rapamycin
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CoAS Me

O

Acetyl coenzyme A
biosynthetic

'two-carbon' starting unit

>20
steps fatty acids

polyketides
steroids
terpenes

palmitic acid
rapamycin
cholesterol
camphor

e.g.

RFO

O

Fluorous–tagged diazoacetate
diversity–oriented synthetic

'two-carbon' starting unit

N2

2–4
steps alkaloid scaffolds

polycarbocyclic scaffolds
heterocycles
chiral centres

RF = Fluorous tag
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Diversity-Oriented Synthesis

Emma Wyatt, Warren Galloway & Suzanne Fergus
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Diversity-Oriented Synthesis

Suzanne Fergus Chem. Commun. 2006, 3296-3298



RFO

O
N2

Rh2(TFA)4
RT, 2 h

ORFO

84%

RF=C6F13CH2CH2

O ORF

H

N
O

O

O ORF

110 ˚C N
Ph

O O

59%

Me
N

CO2Me

(i) MeNH2, HO–

(ii) MeOH, H+

35%

Diversity-Oriented Synthesis

Chem. Commun. 2006, 3296-3298Emma Wyatt
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Chem. Commun. 2006, 3296-3298Emma Wyatt, Warren Galloway
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Parallel library synthesis of 223 compounds

  quantity range 2-15 mg
  MW range 140-614
  purity > 90%

R ORF
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R OH
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R OH R NHR'

O

Diversity-Oriented Synthesis

Emma Wyatt, Warren Galloway & Suzanne Fergus



Library of 223 compounds includes 
30 discrete molecular frameworks.
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JAVA-based software tool for the analysis of structure-related biochemical data.
Available as open source software distributed free of charge under the GNU General Public License.

http://scaffoldhunter.sourceforge.net/index.html

Scaffold Hunter

Nature Chem. Biol. 2009, 5, 581-583Stefan Wetzel, Karsten Klein, Steffen Renner, Daniel Rauh, Tudor I Oprea, Petra Mutzel, Herbert Waldmann



Gemma Thomas, Freija Glansdorp, Richard Spandl

CoAS Me

O

Acetyl coenzyme A
biosynthetic

'two-carbon' starting unit

>20
steps fatty acids

polyketides
steroids
terpenes

palmitic acid
rapamycin
cholesterol
camphor

e.g.

Solid phase phosphonate
diversity–oriented synthetic

'two-carbon' starting unit

2–5
steps alkaloid scaffolds

polycarbocyclic scaffolds
terpene scaffolds
chiral centres
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Angew. Chem. Int. Ed. 2008, 47, 2808-2812Gemma Thomas
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Angew. Chem. Int. Ed. 2008, 47, 2808-2812Freija Glansdorp
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Angew. Chem. Int. Ed. 2008, 47, 2808-2812Richard Spandl
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Angew. Chem. Int. Ed. 2008, 47, 2808-2812Gemma Thomas
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Angew. Chem. Int. Ed. 2008, 47, 2808-2812Gemma Thomas
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Parallel library synthesis of 261 compounds

  quantity range 1-20 mg
  MW range 152-730
  purity > 80%
  molecular frameworks 25
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Assess physicochemical and topological diversity.

Calculate 184 molecular descriptors, e.g.

  Size
  Polarity
  Charges
  Degree of Branching…

Use principal component analysis to visualize.

Diversity-Oriented Synthesis

Angew. Chem. Int. Ed. 2008, 47, 2808-2812Andreas Bender
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Antibacterial Screening



Antibacterial Screening



Antibacterial Screening

Gemma Thomas, Emma Wyatt, Suzanne Fergus



20 hits at 100 µM concentration, e.g.
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20 hits at 100 µM concentration, e.g.



MIC50 (µg ml-1)
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Emmacin & gemmacin only affect cell growth of human 
epitheleal cells at concentrations above 250 µM.
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Antibacterial Screening

Gemma Thomas, Clare Bryant



Emmacin & gemmacin only affect cell growth of human 
epitheleal cells at concentrations above 250 µM.

But what are the mode of actions?
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Antibacterial Screening
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Emmacin: non-toxic, selective for bacteria…?

Mode of action assays (>20):

ATP synthesis uncoupling

protein synthesis inhibition

generation of reactive oxygen species

Target Identification

Chem. Commun. 2008, 4962-4964Olivier Loiseleur
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Target Identification
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Emmacin represents a new structural sub-class
of bacteria-selective DHFR inhibitors

Target Identification

Chem. Commun. 2008, 4962-4964Gemma Thomas, Martin Welch
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Emmacin & gemmacin only affect cell growth of human 
epitheleal cells at concentrations above 250 µM.
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But what are the mode of actions?



Emmacin & gemmacin only affect cell growth of human 
epitheleal cells at concentrations above 250 µM.

But what are the mode of actions?
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Gemmacin: positive for ROS generation

Target Identification

Angew. Chem. Int. Ed. 2008, 47, 2808-2812Olivier Loiseleur

Mode of action assays (>20):

ATP synthesis uncoupling

protein synthesis inhibition

generation of reactive oxygen species



Membrane disrupter of MRSA. 

Lysostaphin cleaves pentaglycine bridges in the cell
walls of staphylococci.

Target Identification

Angew. Chem. Int. Ed. 2008, 47, 2808-2812Gemma Thomas, Jodi Lindsay
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Diversity-oriented synthesis
(~500 compounds; ~50 scaffolds)

Antibacterial screening
(EMRSA-15 & EMRSA-16)

Discovery of two new antibacterial molecules
(emmacin & (–)-gemmacin)

Mode of action & target identification
(bacteria selective mechanisms)

Summary

Chem. Commun. 2006, 3296-3298;  Chem. Commun. 2008, 4962-4964;  Angew. Chem. Int. Ed. 2008, 47, 2808-2812
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