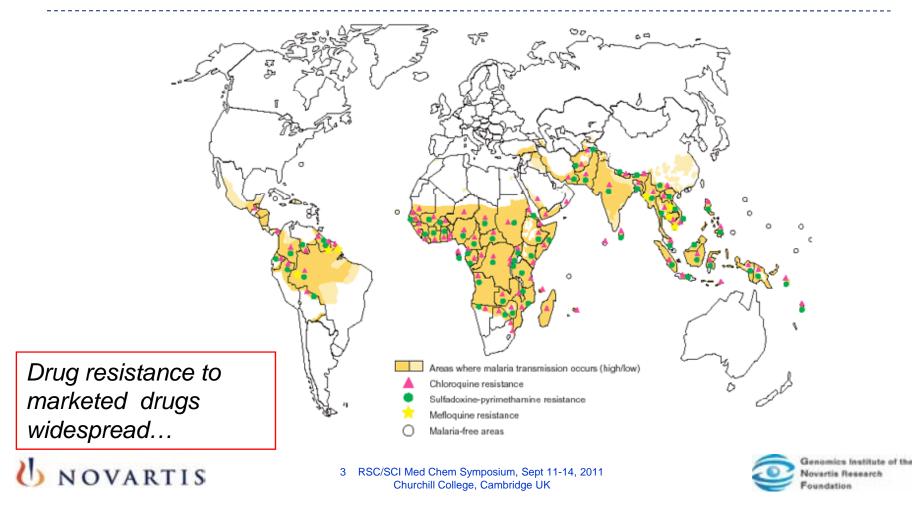
Discovery of novel antimalarials through cell-based medicinal chemistry optimization of HTS hits

What is GNF?

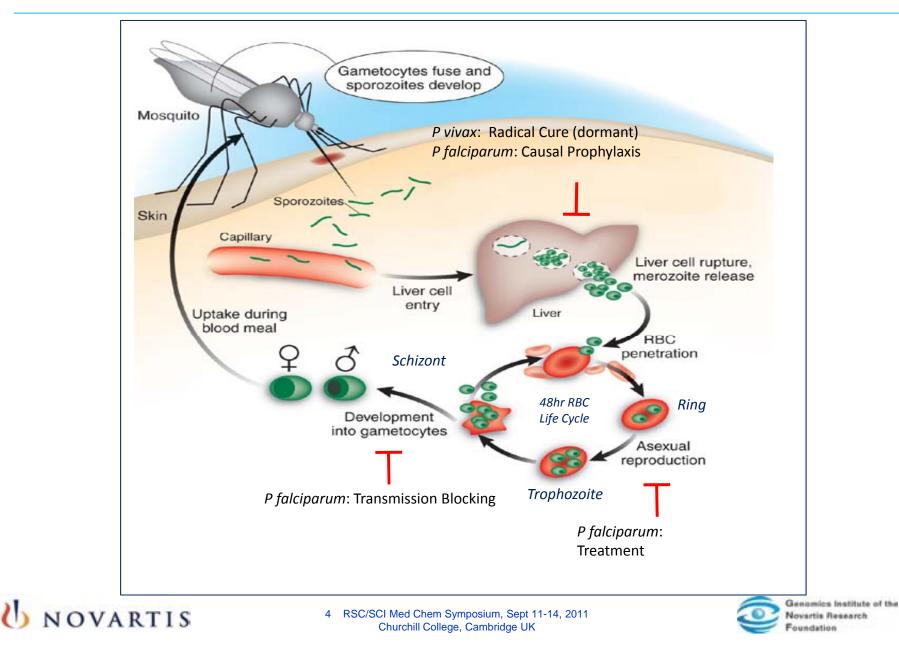
- -Funded by the Novartis Research Foundation
- -Moved into a temporary 40,000 square foot laboratory facility in 3Q 1999
- -Moved into permanent 260,000 square foot research campus in 1Q 2002
- -Additional 24,000 square foot manufacturing facility
- -Present headcount ~580 FTE

-Currently, up to preclinical toxicity studies done at site, integrated with Novartis development

2 RSC/SCI Med Chem Symposium, Sept 11-14, 2011 Churchill College, Cambridge UK



Genomics Institute of the Novartia Research Foundation


Malaria: Medical Need

Growing resistance demands NCEs

- 500 million cases annually worldwide
- At least 1 million deaths per year, >75% under age of 5
- Resistance to current therapies widespread with exception of artemisinin derivatives
- Current artemisinin-based combination therapies (ACTs) contraindicated in 1st trimester

Complex Life-Cycle of the Parasite

Scope and Scientific Approaches

GNF scope is to use technology to develop novel assays with high throughput as well as translational component to develop novel antimalarial chemotypes through multiple parallel approaches

• Cell-based screen approach

- Majority of anti-infectives discovered through cell-based screening by facilitating parallel interrogation of druggable targets and also addresses compound permeability issues
- HTS on >2M compounds: *P. falciparum* infected human RBCs (proliferation inhibition)
- Liver-stage infection assay (P. vivax infection)

Target identification methods

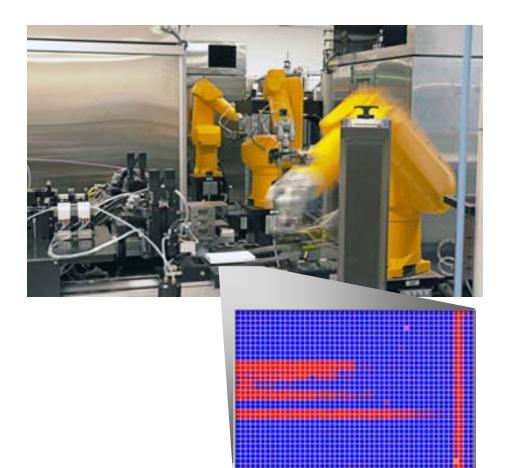
- Lab-evolved resistant strains upon compound treatment
- Tiling array analysis and whole-genome sequencing to help MoA determination
- Affinity chromatography/proteomics analysis

Target-based screen approach

- Plasmodium kinases: such as CDPK1, CDPK5, GSK3, CK2 α
- Additional biochemical targets screening at GNF on cell-active compounds

The NGBS consortium

- Novartis Institute for Tropical Diseases (NITD), Singapore
 - Team leaders: Bryan Yeung, Zou Bin, Christophe Bodenreider
- Genomic Institute of the Novartis Research Foundation (GNF)
 - Team leaders: Arnab Chatterjee, Kelli Kuhen and Elizabeth Winzeler
- Biomedical Primates Research Center (BPRC), Rijswijk (NL)
 - Team leader: Clemens Kocken
- Swiss Tropical Institute (STI), Basel (CH) (now named Swiss TPH)
 - Team leader: Matthias Rottmann
- The NGBS (<u>N</u>ITD, <u>G</u>NF, <u>B</u>PRC, <u>S</u>TI) consortium
 - Program Head: Thierry Diagana (NITD)
- NGBS is funded by:



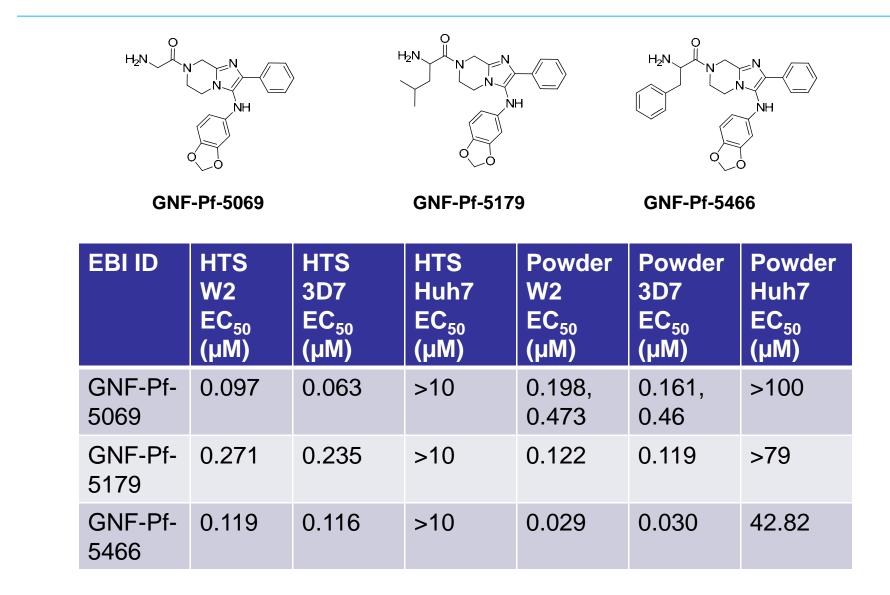
GNF Malaria Cell-based Screening Summary

- > 2M compounds screened at 1.25 μ M (3d7)
- 4851 hits < 1.2 μM EC₅₀ vs W2 and/or 3d7
 - "Malaria Box" public resource for malaria research community
 - https://www.ebi.ac.uk/chembldb/index.ph p/compound
- 1,256 < 200 nM EC₅₀ vs 3d7
- >200 scaffolds represented in the reconfirmed compound set

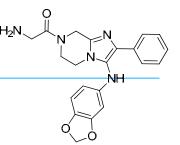
Tremendous amount of chemical diversity from screen

HTS reported in: Plouffe and co-workers PNAS 2008, 9059.

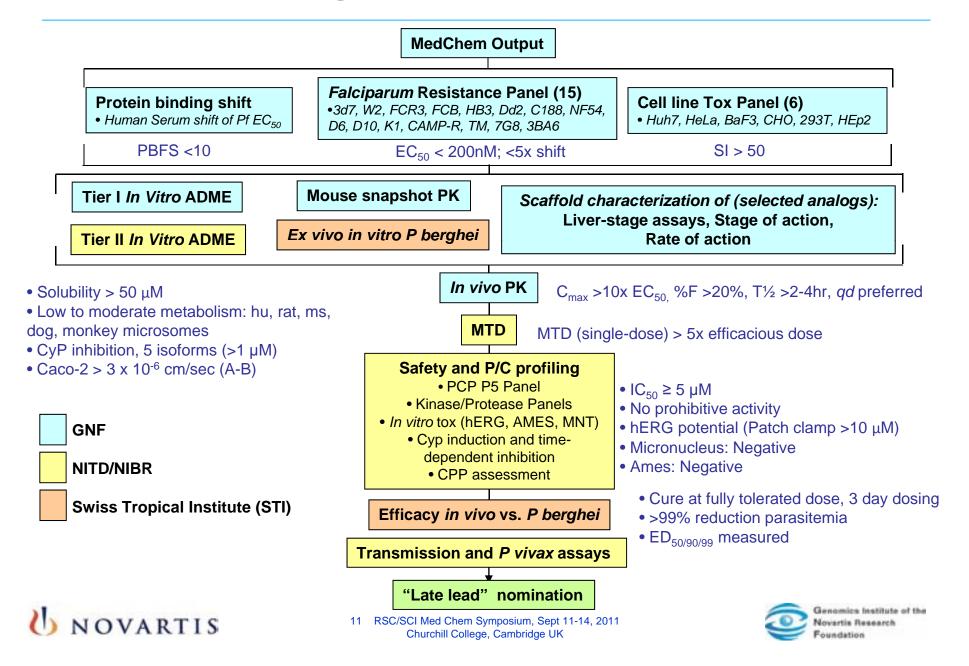
Selection criteria for cell-based HLO at GNF


- ~5K reconfirmed blood-stage hits from HTS identified for further evaluation were determined by
 - Less than 1.25 μ M EC₅₀ with activity in 15 stain resistance panel
 - Less than 5-fold potency shift between strains
 - High selectivity in 6-cell line toxicity panel (SI > 20-fold)
 - Novel chemotype for malaria
 - Ease of synthesis (less than 7 steps)
 - Good solubility, metabolic stability and limited CYP450 inhibition
 - Multiple actives within a scaffold (if library diversity allows)
 - OPI algorithm used for clustering (developed at GNF) Yan, et al. J. Chem. Inf. Model. 2005 45, 1784 -1790
 - Integrates SAR information into analysis of HTS data to prioritize interesting singletons as well as lower activity compounds that have good SAR from the screen

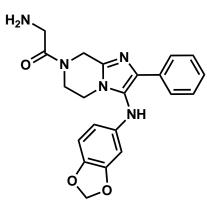
This presentation will focus on 1 series prioritized from this clustering


Imidazolopiperazines Hit series

Imidazolopiperazines Hit Series



- Strengths
 - Unique scaffold for malaria, no biological activity annotation with structure
 - 4 step synthesis
 - Very good solubility; no activity on Cyp450s
 - Not identified in >100 HTS screens performed at GNF
- Issues
 - Moderate in vitro potency
 - In vivo snapshot PK: poor oral exposure
 - Likely due to catechol and glycinamide
 - hERG inhibition (35% at 10 μ M, patch clamp)



Compound Progression Scheme

Hit-to-lead optimization Summary

- GNF-Pf-5069
 - Pf 3D7 (EC₅₀): 460 nM
 - hERG (binding) IC_{50} = 19 μM
 - Mouse metabolic stability (ER): 0.24
 - Solubility (pH 6.8): > 175 μ M
 - $\text{ PO C}_{\text{max}} (\text{D.N.}) = 16 \text{ nM} / (\text{mg/kg})$
 - $\text{ PO AUC}_{0-5h} (D.N.) = 48.6 \text{ h*nM / (mg/kg)}$

Poor exposure limited any further work

(*D.N.: dose normalized)

Compound GNF776

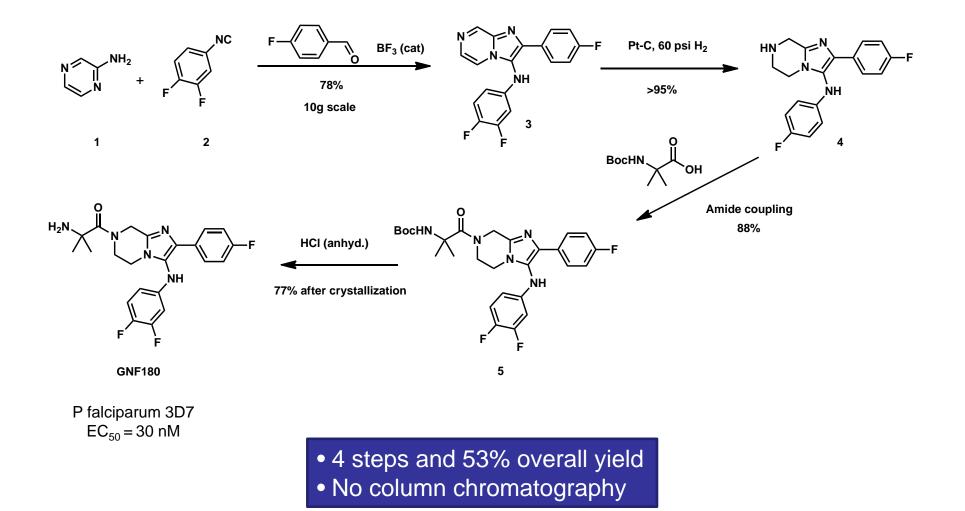
- *Pf* 3D7 (EC₅₀): 20 nM

 H_2N

- hERG (binding) IC₅₀ = 3.95 μ M
- CL = 60 mL/min/kg; V_{ss} = 23.7 L/kg; T¹/₂ = 6.2 h

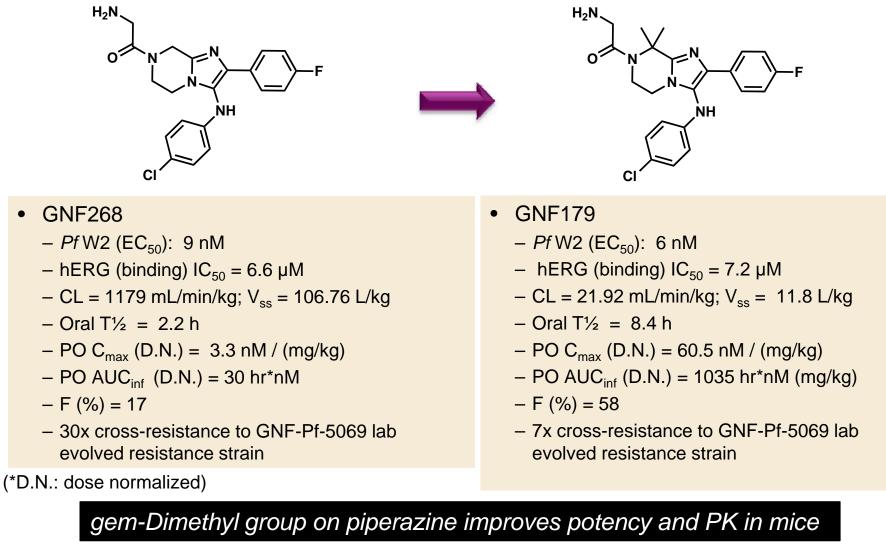
NH

- $PO C_{max} (D.N.) = 60 nM / (mg/kg)$
- $PO AUC_{0-inf} (D.N.) = 596.5 h*nM / (mg/kg)$
- F (%) = 87
- Efficacy achieved in *p berghei* mouse model


Still need to improve hERG and potency

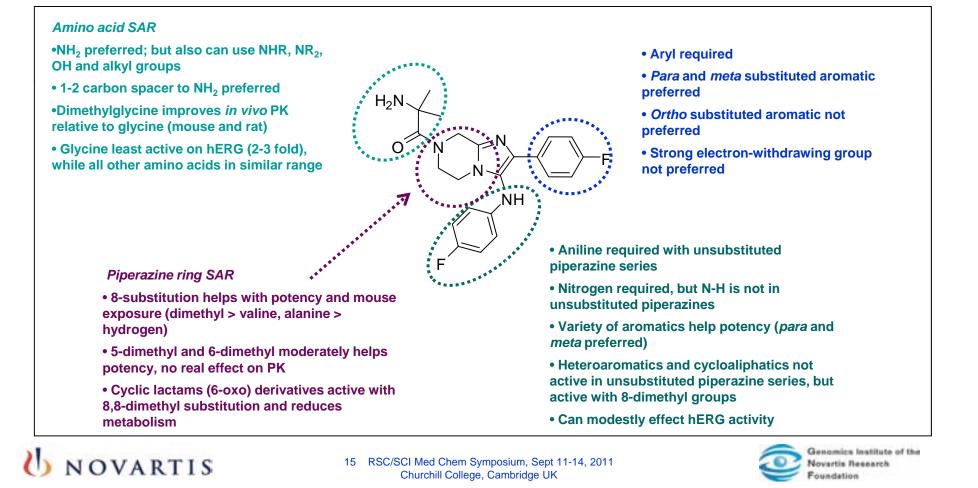
J. Med. Chem. **2011**, *54*, 5116.

Groebke-Blackburn Cyclization Route



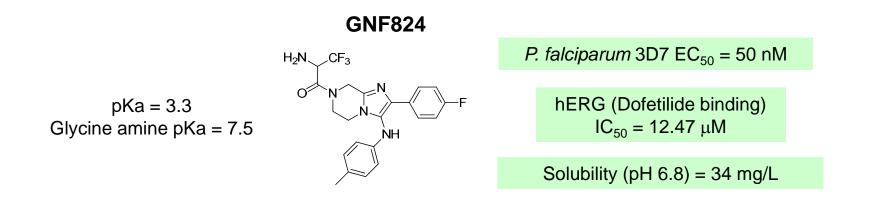
Imidazolopiperazine Core Optimization

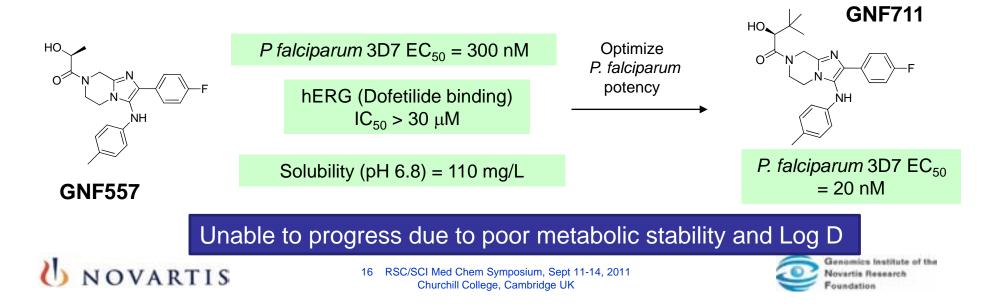
8,8-dimethyl substitution significantly improves profile



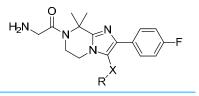
U NOVARTIS

SAR Summary


- Optimization of the Imidazolopiperazine scaffold:
 - Introduction of 8,8-dimethylgroup on piperazine improves in vitro and in vivo potency by 10-fold
 - Required glycine functionality is primary cause for hERG activity


hERG Optimization

Targeting the amine functionality


Modulate amine basicity:

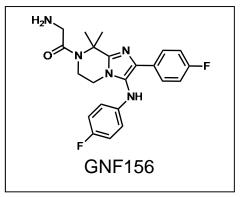
Replacement of amine with alcohol:

SAR of the 3-position (aniline group)

Cmpd	X	R	<i>Pf</i> 3D7 EC ₅₀ (nM)	pH 6.8 Solubilit y (µM)	Rat ER	hERG (binding) (µM)
GNF156	NH	4-F-Ph	10	>1000	0.52	6.4
GNF877	CH ₂	4-F-Ph	8	>1000	0.49	2.7
GNF767	0	4-F-Ph	3	>175	0.13	4.0
GNF765	S	4-Me-Ph	8	42	ND	4.2
GNF772	SO	4-Me-Ph	42	>175	0.37	26.0
GNF771	SO ₂	4-Me-Ph	5210 (NF54)	ND	ND	ND
GNF713	SO	3-F-Ph	481	ND	ND	12.0
GNF714	SO	4-F-Ph	70	ND	ND	>30
GNF715	SO	3,5-Me ₂ - Ph	381	ND	ND	15.0
GNF716	SO	3,4-F ₂ -Ph	89	ND	ND	27.0

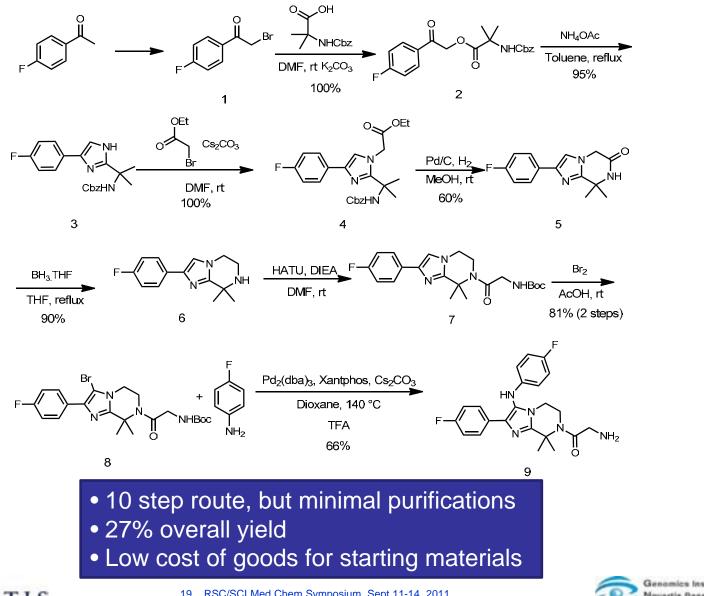
Sulfoxide linkage is a good balance of potency, solubility and hERG

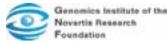
17 RSC/SCI Med Chem Symposium, Sept 11-14, 2011 Churchill College, Cambridge UK



Genomics Institute of the Novartia Research Foundation

Profile of Preclinical candidate: GNF156


- In vitro Activity Profile of Imidazolopiperazines
 - *P. falciparum* W2 potency: EC₅₀ = 0.006 μ M
 - Compound exhibits < 5-fold shift across 15 strains
 - Selectivity vs. Huh7 cells: >10,000 fold
 - Complete transmission blocking at 500 nM
- In vivo Profile
 - Good oral PK/bioavailability and exposure; $T_{1/2} > 4 h$
 - In vivo efficacy in P. berghei mouse model: $ED_{99} = 2.2 \text{ mg/kg}$
 - Causal prophylaxis data: Fully protective at 20 mg/kg
- ADME/Safety/Physicochemical Profile
 - ADMET: solubility: >1000 μ M @ pH1 and @ pH 6.8; no GSH trapping; no Cyp induction or phototoxicity flags
 - Clean PCP receptor panel, Ames, MNT and good metabolic stability
 - Formulation suitable for tox studies identified (35x exposure multiples achieved in rats and 16x in dogs)
 - hERG activity at 6.6 μ M in binding assay; 13 μ M in automated patch clamp assay
- Unique activity for blood/liver-stage infections and transmission blocking



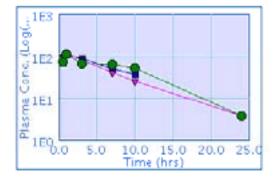
GNF156: Current Synthesis Route

🔥 NOVARTIS

GNF156: In vivo efficacy in P. berghei model

Compound	# of animals per dose	ED ₅₀ (mg/kg)	ED ₉₀ (mg/kg)	ED ₉₉ (mg/kg)
Chloroquine	5	1.9	5.2	8.4
Mefloquine	5	3.8	5.0	8.6
Artesunate	5	5.0	20.5	119
Imidazolopiperazine GNF156	5	0.48	1.13	2.2

Oral Exposure in mouse at efficacious dose (2 mg/kg)

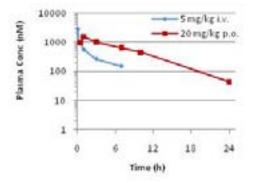

$$C_{max} = 112 \pm 5 \text{ nM}$$

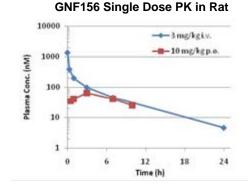
$$T_{max} = 1 \text{ h}$$

$$T1/2 = 4.8 \pm 0.8 \text{ h}$$

$$AUC_{inf} = 945 \pm 110 \text{ nM*h}$$

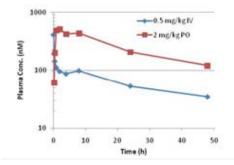
$$\%F = 32 \pm 4$$





GNF156 PK Properties in Mouse, Rat and Dog

GNF156 Single Dose PK in Mice


Mouse PK (5 / 20 mg/kg, n=3)				
CL (ml / min•kg)	49 (mod)			
V _{ss} (l/kg)	10 (high)			
t _{1/2term.} (h)	6.7			
AUC (h•nM) p.o.	12156			
C _{max} (nM) p.o.	1539			
T _{max} p.o. (h)	1.0			
Oral BA (%F)	74			

Rat PK (3 / 10 mg/kg, n=3)				
24 (low)**				
26 (high)				
4.9				
975				
91				
1.6				
20				

** Adjusted for RBC partitioning

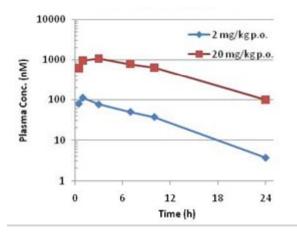
GNF156 Single Dose PK in Dog

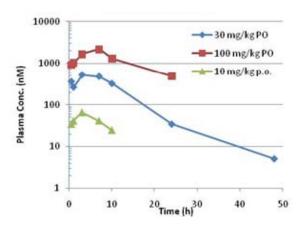
Dog PK (0.5 / 2 mg/kg, n=3)				
CL (ml / min•kg)	5 (low)			
V _{ss} (l/kg)	11 (high)			
t _{1/2term.} (h)	28.5			
AUC (h•nM) p.o.	16142			
C _{max} (nM) p.o.	553			
T _{max} p.o. (h)	1.7			
Oral BA (%F)	89			

• In rat whole blood, GNF156 showed moderate RBC partition with blood to plasma ratio of 3.5.

• GNF156 exhibits low to moderate blood CL, high V_{ss}, and reasonable bioavailability across species

• Exposure multiple of 16 achieved in dogs (AUC_{eff} ~1000 h*nM at 2 mg/kg in mice). Long T_{1/2} in dogs.




Genomics Institute of the Novartia Research

GNF156: Dose Linearity PK in Mouse and Rat

Mean Mouse Plasma Conc.

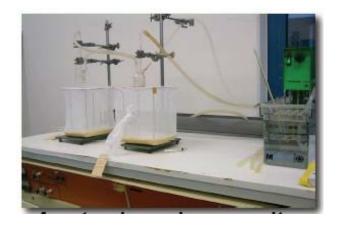
Mean	Rat	Plasma	Conc
------	-----	--------	------

	Mouse			Rat		
Formulation	Solution		Solution		Suspension	
Dose PO (mg/kg)	2	20	10	30	100	•
t _{1/2} , po (h)	4.9	4.4	4.7	6.2	8.4	
AUC (h•nM) p.o.	945	12156	975	7338	34885	
AUC fold change		12.9		11.6	35.8	•
C _{max} (nM)	112	1539	91	581	2233	
C _{max} fold change		13.7		6.4	24.5	
F (%)	32	74	20	40	57	

- AUC increase more than dose proportional in mice
- AUC and C_{max} increase more than dose proportional in rats
 - Exposure multiple of 35 achieved in rats at 100 mg/kg (AUC_{eff}~1000 h*nM at 2 mg/kg in mice)

GNF156: Human efficacious dose projections

Species	Units	Mice	Rat	Dog	Human
Body weight	kg	0.025	0.25	8.7	70
Dose	mg/kg	5	3	0.5	1
Vss	L/kg	10.2	25.7	10.9	10.2 to 25.7
CL	mL/min/kg	49.2	84.4	4.8	0.9 to 4.5
T1/2	h	2	4.9	28.5	14.5 to 71
F	%	66	47	89	67


- Efficacy : ED₉₉ in mice for KAF156 is 2.2 mg/kg.
- Bioavailability : F was estimated to be 67% in humans
- Clearance : 0.9 to 4.5 ml/min/kg using various methods.
- Human efficacious dose (to show similar efficacy to the mouse 99% parasitemia reduction) was
 predicted to be <u>2.3 to 48mg</u> based on the following assumption
 - Efficacy is similar in P.b infected mice and P.f infected human
 - PK is similar in normal mice and P.b infected mice

Imidazolopiperazines Block Transmission

Novel activity for a potent blood-stage antimalarial

Stage V gametocyte transmission mosquito feeding experimental procedure:

- 1. The compounds are added to a bloodmeal with NF54 gametocytes
- 2. Six days after the fed mosquitoes are dissected and checked for oocysts
- Compounds can have an effect on mosquitoes, therefore the mortality of the mosquitoes is checked every day

	% infected mosquitoes	# Oocysts/ mosquito
Control	95	49
GNF776 (0.7 μM)	60	1.5
GNF776 (7 μM)	0	0

Data furnished by Sauerwein lab

Conclusions and path forward:

- GNF776 (lead cmpd) inhibits oocyst development dose-dependently
- Optimized GNF156 blocks transmission completely at 500 nM
- This novel activity is critical for potential eradication goals

GNF156 preclinical safety summary

No significant tox at up to 30-45 (rat) or 135-250 (dog) fold over ED₉₉ exposure

Genotoxicity

Mini Ames mutagenicity assay: negative

Phototoxicity

3T3 NRU assay: negative (PIF = 1.4)

2-week rat toxicity at 10, 30, and 100 mg/kg/day

 100 mg/kg/day: salivation, respiratory distress, 1 lymphocyte counts and WBC, mild thyroid follicular hypertrophy/hyperplasia, and possibly testicular degeneration (1/5 rats but not in controls)

≥30 mg/kg/day: ↑ platelets (17-20%), in 3/5 rats at 30 and all rats at 100 mg/kg/day, mild-mod ↑ creatinine (up to 2-fold); mild (15%) ↑ globulin

All doses: \downarrow CK (-16- 56%) and glucose (-6 - 15%) in several rats per group

Dog rising dose with telemetry at 2, 10, 30, 100, 250 mg/kg

250 mg/kg: Transient heart rate increase without ECG changes

Lessons learned

- Molecular weights greatly effect the cellular optimization
 - -Forces the chemistry to be very atom economical (high ligand efficiencies)
- SAR can be challenging, but getting hits from HTS with good SAR is critical
 - -Better to have SAR than absolute potencies off the deck
 - Potencies can be optimized relatively quickly compared to other parameters
- Weekly cytotoxicity, protein binding shift potency, and cross-resistance data to other scaffold lab-evolved resistance strains really allows for better optimization of other parameters

Acknowledgements (Research)

Chemistry

- Advait Nagle
- Tao Wu
- Tomoyo Sakata
- Robert Moreau
- Jason Roland
- Pranab Mishra
- David Tully
- Valentina Molteni

Biology

- Kelli Kuhen
- Carolyn Francek
- Zhong Chen
- Kerstin Henson
- Rachel Borboa
- James Gilligan
- Tae-gyu Nam
- Neekesh Dharia
- David Plouffe
- Case McNamara
- Stefan Meister

UNOVARTIS

• Elizabeth Winzeler

Pharmacology/Analytical

- Tove Tuntland
- Perry Gordon
- Jonathan Chang
- Matthew Zimmerman
- Liang Wang
- Todd Groessl
- Barbara Saechao
- Bo Liu
- Chun Li
- David Jones
- Wendy Richmond
- Kevin Johnson
- Tom Hollenbeck
- Lucas Westling
- Michael Kwok
- Tiffany Chuan
- John Isbell

Informatics

- John Che
- Yingyao Zhou

Swiss Tropical and Public Health Institute

- Matthias Rottmann
- Christoph Fischli
- Sonja Maerki

<u>NITD</u>

- Bryan Yeung
- Zou Bin
- Anne Goh
- Suresh B. Lakshminarayana
- Veronique Dartois
- Thomas Keller
- Thierry Diagana

External collaborators

- Montip Gettayacamin (AFRIMS Bangkok)
- Robert Sauerwein (NCMLS The Netherlands)
- Ian Bathhurst (MMV)

GNF Management

- Jennifer Taylor
- Richard Glynne
- Martin Seidel
- Peter Schultz

Acknowledgements (Development)

Core team

Margaret Weaver Xingmei Han Giancarlo Francese Sreehari Babu Rita Ramos Karen Beltz Bo Han Wen Shieh Markus Baenziger

Novartis Tropical Medicines

Heiner Grueninger Anne-Claire Marrast Paul Aliu Gilbert Lefevre Clinical team Jens Praestgaard, Ruobing Li

External support and advice

Marcel Tanner, Swiss Tropical Institute, Nick White, Oxford University

