

The Discovery and Evaluation of PF-3893787: A Novel Histamine H4 Receptor Antagonist

Nigel Swain nigel.swain@pfizer.com Pfizer World Wide Medicinal Chemistry

16th SCI-RSC Medicinal Chemistry Symposium Churchill College, Cambridge, UK Tuesday 13th September 2011

Outline

- Introduction
- Tools for CIR & CIS studies
- New series from HTS
- Hit to lead studies
- Early toxicity studies
- Final optimisation & compound selection
- Enablers for clinical studies
- Initial clinical results
- Summary and learning

Histamine H4 Receptor

- H4R is an aminergic GPCR
 - cloning & characterisation reported 2000-1
 - 40% homology with hH3R
- Expressed on immune cells
 - eosinophils, neutrophils, T-cells, mast cells & basophils
- H4R antagonists implicated in treatment of inflammatory diseases
 - Asthma, pruritus, inflammatory skin diseases, pain, AR, IBD, Cancer,...
- High 'drugability' increase CIR/CIS

Objectives

- Test mechanistic rationale & safety
 - Human and animal cellular experiments
 - In vivo disease models
 - In vitro safety assessments
 - In vivo safety studies
- Require tool compounds suitable for *in vitro* and *in vivo* CIS & CIR studies
 - Mechanism
 - Chemical series
 - Specific compound

A Literature Tool

JNJ-7777120 hH4R Binding Ki 8.0nM (Lit. Ki 4nM¹)

H4R Functional Ki 6.8nM

Highly selective vs. H1/H2/H3 and in WLP

MW 277 LE **0.47** clogP 2.5, LogD 2.6 Caco-2 AB/BA 44/29cms⁻¹

Literature²: HLM $T_{1/2}$ 28min RLM $T_{1/2}$ 4.5min

Rat (10mpk, PO) $T_{1/2} = 2.3h$, F = 22%

- Very useful early tool but sub-optimal metabolic stability and pharmacokinetics
- Seek novel compounds with improved pk properties
- Avoid indole

¹Jablonowski et. al., Journal of Medicinal Chemistry, 2003, 46 (19), 3957-3960. ²Zhang et. al., Pharmacology & Therapeutics 2007, 113 (3), 594-606.

Octahydropyrrolopyrrole Discovery

JNJ-7777120 clogP 2.5, logD 2.6, pKa 6.9 H4R Binding Ki 8.0 nM (lipE 5.5)* H4R Functional Ki 6.8nM HLM 28uL/min/mg RLM 61uL/min/mg

PF-2311200 clogP 2.3, logD 1.7, pKa 8.3 H4R Binding Ki 16nM (**lipE 6.1**) H4R Functional Ki 27nM **HLM 7uL/min/mg** RLM 36uL/min/mg **RM+ve**

Diamine monomer selection low MW (<200) Piperazine mimics

Benzimidazole Discovery

PF-2311200

clogP 2.3, logD 1.7 H4R Binding Ki 16nM (lipE 6.1) H4R Functional Ki 27nM HLM 7uL/min/mg RLM 36uL/min/mg RM+ve

PF-3306138 H4R Binding Ki 10-128nM H4R Functional Ki 10-53nM HLM <7uL/min/mg RLM 10-40uL/min/mg

A Synthetic Bonus

Amidine formation *via* suspected incomplete hydrolysis Amidine synthesised *via* alternative route and profile verified

Amide/Amidine Profiles

PF-3306138

clogP 1.3, logD 1.2, pKa 8.2 H4R Binding Ki 128nM (lipE 5.7) H4R Functional Ki 53nM HLM <7uL/min/mg RLM 40uL/min/mg

Rat PK

CI 58ml/min/kg Vd 4.1L/Kg $T_{1/2}$ 0.8h F 50%

PF-2988403

clogP 2.4, logD 1.0, pKa 8.4, 7.1 H4R Binding Ki 10nM (lipE 7.0) H4R Functional Ki 10nM HLM <7uL/min/mg RLM 10uL/min/mg

Rat PK

Cl 31ml/min/kg Vd 31L/Kg T_{1/2} 12h F 20%

• Novel H4 antagonists, indole removed, suitable for further study

Benzimidazole ETS Results

- Leads took project to Lead Development milestone
- Clean off-target pharmacology de-risk novel H4R antagonist mechanism
- Parallel rat PO 4 day Early Toxicology Study (ETS) with amide & amidine
 - Increased confidence in conclusions with n=2 compounds

PF-03306138 MW 306, LogD 1.2 H4 bind/func Ki 117/48nM 5HT3 selectivity 8x HLM/RLM <7/40 uL/min/mg Rat T1/2 0.8h

PF-02988403

MW 305, LogD 1.0 H4 bind/func Ki 7/10nM 5HT3 selectivity 110x HLM <7/10 uL/min/mg **Rat** T1/2 11h

- Serious adverse effects produced by both compounds in rats:
 - Dose-dependent lymphoid depletion from spleen, thymus and gut associated lymphoid tissues
 - Decreased reticulocyte count and decreased erythropoesis at all doses
 - Induce a significant pro-inflammatory response in rat
- TK analysis confirms exposure >H4R Ki drives effects
- Blood cells generated in bone marrow where H4R is expressed
- Is H4 receptor antagonism a toxic mechanism or is it just these compounds?
- Develop a new series from HTS to explore mechanism vs. compounds

HTS & H2L

PK of PF-03826719

PF-3826719

H4 bind Ki 1.3nM H4 func Ki 0.034nM H3 bind Ki 213nM clogP 2.7, logD 0.7 LE 0.65, lipE 8.2 pKa 6.5 & 7.9 HLM < 7µl/min/mg RLM <8.5 µl/min/mg

Data	Rat	Dog
Blood Cl (Clu)	77 (196)	30 (68)
Blood Vd (Vdu)	49 (124)	48 (109)
T1/2 (h)	6.9	19
Bioavailability	57	-
Renal Clu	10	_
Prediction	Man (from rat)	Man (from dog)
Prediction Blood Cl	Man (from rat) 16	Man (from dog) 16
Prediction Blood Cl Blood Vd	Man (from rat) 16 42	Man (from dog) 16 37
Prediction Blood Cl Blood Vd T1/2	Man (from rat) 16 42 30	Man (from dog) 16 37 27

• Human dose prediction of 15mg od (3 x Ki at trough)

• But High Confidence of High Clearance and high risk

 But still a good tool to revisit CIS with further rat ETS

Benzimidazole ETS

PF-3826719 H4 bind Ki 1.3nM H4 func Ki 0.034nM RLM 10μl/min/mg

PF-3861018 H4 bind Ki 4.6nM H4 func Ki 1.5nM RLM 33µl/min/mg

PF-3818195 H4 bind Ki 20.2nM H4 func Ki 8.4nM RLM <8.5μl/min/mg

PF-3818170 H4 bind Ki 9070nM H4 func Ki >1820nM RLM <8.5μl/min/mg

Active

23/55/160xhKi vacuolation observed at highest dose **No effect on hematopoetic or lymphoid tissues**

Active 14/191xhKi No effect on hematopoetic or lymphoid tissues

Active

18/160xhKi vacuolation observed at highest dose BM cytology changes at high dose

Structurally related inactive Mortality at high dose

- Good news... No effect on hematopoetic or lymphoid tissues
- Still need rH4R to put data fully into context
- Value of multiple compounds increases confidence in conclusions

Improving PK

PF-3826719

H4 bind Ki 1.3nM H4 func Ki 0.034nM H3 bind Ki 213nM clogP 2.7, logD 0.7 LE 0.65, lipE 8.2 pKa 6.5 & 7.9 HLM < 7µl/min/mg RLM <8.5 µl/min/mg

Data	Rat	Dog
Blood CI (Clu)	77 (196)	30 (68)
Renal Clu	10	-
Prediction	Man (from	Man (from
	rat)	dog)

- PF-3826719 stable in HLM & RLM but in vivo CI~LBF
- Many promising new leads also stable in HLM & RLM
- In vitro ADME screens not sufficient to differentiate
- Profile best candidates in rat PK

Profile of PF-3893787

PF-3893787

H4 bind Ki 1.2nM	HLM < 7µl/min/mg
H4 func Ki 0.7nM	RLM <8.5 μl/min/mg
clogP 1.5, logD -0.1	
LE 0.62, lipE 9.0	
pKa 6.9 & 8.8	

	Rat	Dog
Blood CI (Clu)	29 (70)	7(9)
VD (VDu)	23(56)	16(21)
T1/2 (h)	9.4	27
F%	57	50
Renal CLu	14	-
Prediction	Man	Man
Blood Cl	5	5
Vd	16	20
T1/2	37	40
F%	85	-

High confidence of moderate CI

Long T1/2 – low dose prediction

ETS completed Rat & Dog – no adverse events

Biomarker for H4R Antagonism

- Eosinophil shape change induced by H4R agonists such as Imetit
- Inhibition of Imetit-induced shape change in whole blood via Gated Autofluoresence Forward Scatter (GAFS) assay - a validated biomarker of H4R antagonism
- Comparison between JNJ-7777120 and PF-3893787:

In vitro Pharmacology

- Functional antagonist at the human native receptor
- Potency has been established using whole blood or isolated eosinophils on several end points including shape change and actin polymerisation

	PF-3893787		JNJ-7777120	
	Mean IC ₅₀	N	Mean IC ₅₀	N
Histamine-induced <i>isolated</i> <u>eosinophil</u> shape change	0.65nM, 5.3nM	2	199.0nM (86.7 -456.5)	4
Histamine-induced <i>isolated</i> eosinophil actin polymerisation	1.3nM (0.56-3.0)	14	5.3nM (2.9-9.5)	9
Imetit-induced <i>whole blood</i> eosinophil shape change (GAFS)	<30nM (total)	3-6	30-100nM (total)	3-6

In vivo Pharmacology

- Hard to generate strong CIR in pre-clinical animal models
- lack of disease models
- significant H4R species differences¹

Human	100					
Macaque	93	100				
Dog	71	71	100			
G.Pig	62	64	61	100		
Rat	68	68	65	61	100	
Mouse	67	66	66	62	85	100
	Human	Macaque	Dog	G.Pig	Rat	Mouse

• Key H_4 compounds profiled in binding and functional assays using recombinant H_4 from various species

PF-3893787 Ki's

[3H]Histamine binding

Effect on forskolin-induced CRE-reporter gene activity mediated by variants of the H4R

Pharmacology at different species of H4R complex – important implications in interpretation of animal data

- Orthologue *in vitro* and sequence data confirmed difficulty in generating CIR for asthma in preclinical animal models
- Also now discovered that prototype benzimidazoles (amide & amidine) actually agonists in rat
 - Explains pro-inflammatory findings in rat ETS
 - Also suggests an H4R antagonist should be antiinflammatory
- Sufficient rationale to take H4R antagonist to clinic

Ceff / Safety Summary

Enablers for Moving to the Clinic

- Developed robust biomarker assay
- Human dose projection (in absence of PK/PD data)
 - Potency in human native cells
 - Good projected PK profile
- Understanding of affinity and efficacy against orthologues
- Mechanism de-risked in rodent and macaque
 - Regulatory toxicity studies completed in rat and macaque
 - Sufficient margins for progression to human

PF-3893787-18 An oral once-daily histamine H₄ antagonist

MW 262 Tartrate salt

- Potent and selective H4 antagonist at native receptor
- Potential QD profile with low projected dose (7-20mg)
- Rat and macaque are suitable Regulatory Tox. species
- Sufficient safety margins for progression to human
- Fit for purpose pharmaceutical properties

FIH Summary – PK & Safety

PF-3893787 rapidly absorbed C_{max} 30 to 45 minutes postdose

Well tolerated and safe at all dose levels

FIH Summary – PoP Biomarker

- Systemic pharmacodynamics of PF-3893787 was assessed *ex vivo* using imetit-stimulated eosinophil shape change measured by the GAFS flow cytometric assay
- PF-3893787 produced dose-and time-dependent inhibition of this assay at doses >1mg, with complete inhibition of the response over the 24 hour period postdose at doses >12mg

Early Clinical Summary

- PF-3893787 is a validated clinical H4R antagonist
- Doses required to block H4R pharmacology in volunteers are safe and well tolerated
- Studies exploring the utility of PF-3893787 in patients will be reported in due course
- Potential indications include asthma, pruritus, inflammatory skin diseases, pain, AR, IBD, & Cancer

Learning

- Value of early toxicity studies with parallel compounds
 - N=2 increases confidence in conclusions
- Need to understand orthologue potency & efficacy
 - Enables interpretation of CIR & CIS studies
 - Drives selection of species for safety studies
- An orthogonal second series allowed project continuation
 - Enables test of compound vs. mechanism driven effects
- Value of human pharmacology in native tissue
 - Supports dose prediction
- Power of a biomarker
 - Confidence in pharmacology allows confident test of mechanism in patients

Biology Andy Gray Ramla Ali

Chemistry

Garry Douglas Nicole Schacht Tim Davies Kristina Ulrich John Adcock Hannah Mace Isabelle Delescluse **Debbie Meyer** Debbie Heuvelman Adrian Barnard Chris Brown Karl Campany Nick Clarke Matt Deacon Garry Douglas Rabia Hidi Jennifer Hincks **Chervl Lee** Hannah Mace **David Mcloughlin** Mark O'Reilly Luis Perez Tosar **Christelle Perros-Huguet** Anne Phelan Nikki Robas Gary Salmon Tim Stroud Mike Trevethick Chris Williams Anne Wilson Steve Liu

Andy Bell Mark Bunnage Kate Burt **Thomas Dupont** David Dunwoodie Jonathan Fray Duncan Hay Tim Hobson Charlotte Lane Aibd Masood Andrew Mansfield Don Middleton Charlie Mowbray Sandra Newman Michael Paradowski Francesca Perruccio Rachel Plunkett David Price Matt Selby **Nigel Swain** Hannah Vuong Helen White David Williams Kuen Yeap

Clinical/Development

Lisa Tan Jonathan Ward Grant Langdon **Rich Allan**

RTL Mike Bartley

Pharm Sci – OPCoE Simon Peaa **Michelle Collins** Karin Westin Neil Feeder Rita Lodava Pharm Sci – CRD/RAPI Chris Ashcroft Zijhian Zhu

PDM

Rhys Jones Daniel Siddle Ian Gardner Anthony Harrison Heather Chassaing Michelle Gleave Raj Logan Ranjit Atwal Sarah Kempshall Russell Jones Hannah Jones Henry Pertinez Phil Dalton **Claire Collins** Kuresh Youdin DSRD **Neil Brunton** Emanuel Schenck Mick Sutton Fiona Spence

VU University Amsterdam Prof. Rob Leurs

Back Ups

0026-805X/10/T05-734-743820.00 Monsecular Pearselectory Copyright 0 2010 The American Society for Pharmacology and Experimental Therapeutics Mol Pharmacol 77:734-743, 2010

Vol. 77, No. 5 63040/3575066 Printed in U.S.A.

Molecular Determinants of Ligand Binding to H_4R Species Variants[®]

Herman D. Lim, Chris de Graaf, Wen Jiang, Payman Sadek, Patricia M. McGovern, Enade P. Istyastono, Remko A. Bakker,¹ Iwan J. P. de Esch, Robin L. Thurmond, and Rob Leurs

Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands (H.D.L., C.d.G., E.P.I., P.S., R.A.B., I.J.P.d.E., R.L.) and Johnson & Johnson Pharmaceutical Research and Development, LLC, San Diego, California (W.J., P.M.M., R.L.T.)

Received December 9, 2009; accepted January 26, 2010

H4R species binding Kis

Table 4. pK_ivalues for the displacement of [³H]histamine by compound **13** and JNJ-7777120 from H4 receptors from different species.

Compound/Species	13 (PF-3893787)	JNJ-7777120
Human	8.21±0.07°	8.48±0.01
	(n=3)	(n=2)
Macaque	7.81±0.03	7.17±0.09
	(n=3)	(n=3)
Dog	5.79±0.09	6.89±0.08
	(n=3)	(n=3)
Guinea pig	6.91±0.01	5.97±0.02
	(n=3)	(n=3)
Rat	7.91±0.10	8.37±0.02
	(n=3)	(n=4)
Mouse	7.68±0.06	8.41±0.09
	(n=4)	(n=3)

^a The displacement binding was performed using [³H]histamine and homogenate of HEK 293 T cells transiently transfected with the cDNA of corresponding H4R variants. The data are presented as mean \pm S.E.M (number of experiments).

Other H4 antagonists

J&J

Phase 1: SD JNJ-39758979 50, 100, 300, 600mg or Placebo

12 week asthma study using 300mg QD: Read-out: August 2010

Itch study using SD of 600mg J&J-39758979 vs histamine challenge: Read out May 2010

Palau

Phase 1: rising SD UR-63325 completed. MD scheduled for 2Q2010

Cellzome Planned Phase I with CZC-13788 was cancelled.