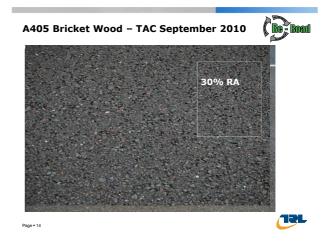
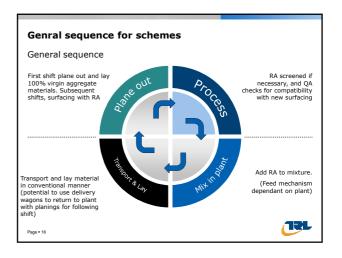
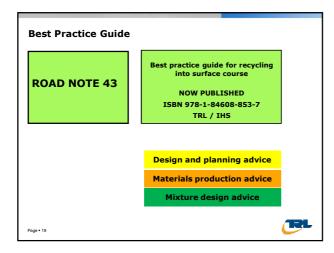
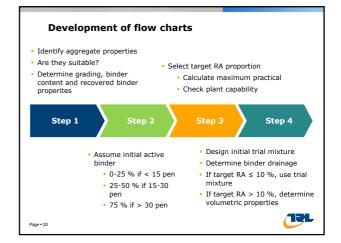
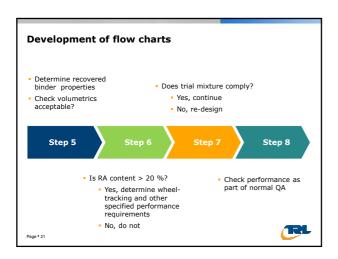

Renishaw Trial		CRe-Road
Results after	up to 9 years service	
Recovered Pen and Softening Point	 Pen 29, 20, 26 (original added binder S.P. 58.8, 64.2, 63 	40/60)
Viscosity	 Results for all sections comparable (a 	fter 75 months service)
Deformation Resistance	 Control and 30 % sections in the rang 75 months service) 	ge 0.9 – 1.1 mm/h (after
Visual Assessment	 All sections 'Moderate / Acceptable' a service (surveyed March 2011) 	after nearly 9 years
Page • 7		TPL

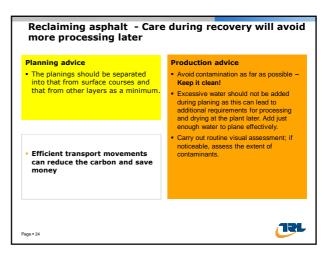

A1(M) Hatfield							
Ch 0	Ch 175	Ch 27		h Ch 82 597			
	20 mm SMA control Section 1	20 mm SMA with 10% RAP Section 2	14 mm SMA with 10% RAP Section 3	14mm SMA control Section 4			
MP 3	32 / 9	Northbound,	Lane 1	MP 33 / 5			
Page • 9				PL			

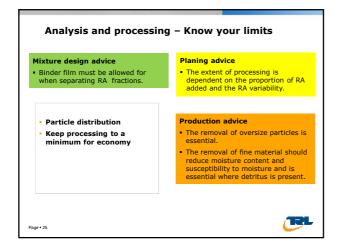


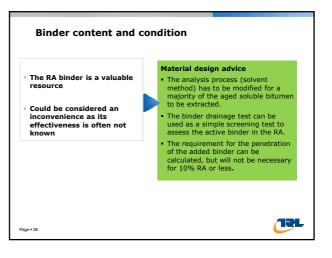

A405 Brick	Re-Board	
Results after	6 years service (September 2010)	
Recovered Pen and Softening Point	 TAC sections. Penetration 67, 64, 43 (93, 89, 66) S.P. 67.2, 60.6, 58 (66, 68.6, 60.6) 	
Viscosity (after 49 months)	TAC sections comparable TSMA sections comparable	
Deformation Resistance	- TAC sections 0.7, 0.7, 0.6 mm/h	
Visual Assessment	TAC sections all 'Moderate' some cracing and a TSMA sections affected by 'unbound' binder co than 10% Assessed as A-S-A	
Page • 13		PL

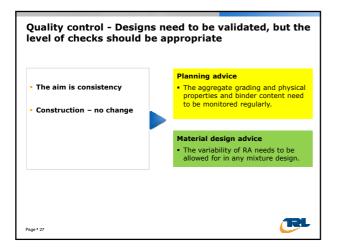




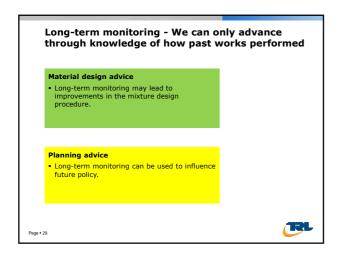












Conclusions I

- Site and laboratory trials have shown that it is feasible to recycle surface course materials into new thin surfacings
- Addition of up to 40 % RA into surface course has been demonstrated
- Comparable performance demonstrated after 9 years service for 30 % RA and control mixtures
- HAPAS certification for up to 10% RA should be relatively straight forward for existing products
- Three major resurfacing schemes demonstrate practicality
- Implications of incorporating RA into surface course mixtures will:
 reduce need for relatively scarce virgin aggregates with high skid-resistance properties
 - make better use of this resource by using it in high value closed loop recycling applications

Page • 30

13L

Conclusions II

- Use expected to increase
- Routine addition of up to 10% RA as the norm? Little and often
- Addition of larger amounts: Go Large on schemes
- Sustainability issues will be the drivers for increased adoption
 - Technological developments in asphalt plant should allow increased and routine use of RA in surfacing layers?
- RN43 covers issues relating to good practice
 - Much of the advice is also applicable to lower asphalt layers
 Some restrictions for surface course layers not applicable to lower layers

P

TPL

Page • 31

